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Abstract 
The existence of a unique solution of Fredholm-Urysohn integral equation (F-UIE) of the second 
kind is discussed and proved. The Fredholm integral term is considered in position with continuous 
kernel, while the Urysohn integral term in time with singular kernel. A quadratic numerical method 
is used to obtain a system of Urysohn integral equations (SUIEs) of the second kind in time. 
Moreover, the modified Toeplitz matrix method (MTMM), as a numerical method, is used to 
obtain a nonlinear algebraic system (NAS). Many important theorems related to the existence of a 
unique solution of the SUIEs, the NAS and the estimate error are considered and proved. Finally, 
numerical examples, when the kernel of time takes a logarithmic and Carleman forms, are 
calculated and the estimate error, in each case, is computed. 
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1. Introduction  

The mixed integral equations have many applications in various sciences [1]-[3]. Many different 
analytic methods can be used to obtain the solution of the mixed integral equations in the Banach 
space where  is the domain of the contact problem and considered in the 
position, while , is the time. By the same time, the numerical methods have played 
an important rule to obtain the numerical solution of the mixed integral equations [4]-[6]. 

Consider the F-UIE of the second kind: 

 

Here,  and  are two given functions, while the function  is unknown 
in the Banach space . The kernel of position  is continuous, while the 
kernel of time , has a singularity. The constant  defines the kind of 
the integral equation, while  is a constant may be complex that has a physical meaning. 

 
2. Existence of a Unique Solution of F-UIE  

In this section, the existence of a unique solution of eq. (1.1) will be discussed and proved by 
virtue of Banach fixed point theorem which can be applied to IEs of the first and second kinds. In 
this aim, we write eq. (1.1) in the integral operator form: 

 

where, 

 

         Then, we assume the following conditions: 
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(i) The kernel of position and satisfies:  
 

(ii) The kernel of time  is a discontinuous function which satisfies:  
(a) For each continuous function  and  , the integrals 

 

      are continuous in  . 
(b)  is absolutely integrable with respect to  for all  ,  thus there exists a 

constant , such that: 

 

(iii) The given function  with its partial derivatives with respect to position and time belong 
to , and its norm is defined by: 

 

(iv) The known function satisfies for the constants  and  the 
following conditions : 

 

 . 
 
Theorem 1: Equation (1.1) has a unique solution in the space ,under the condition: 

 
To prove this theorem , we must consider the following lemmas . 

 
Lemma 1 : The integral operator  maps the space  into itself . 
 
Proof : In view of the two formulas (2.1) and (2.2) ,  and the conditions  we have: 

 

The previous inequality (2.4) shows that , the operator  maps the ball  into itself , where: 

 

Since  and   , therefore we have . Also, the inequality (2.4) involves the 
boundedness of the operator   , where:  

  .                                            (2.6) 
Moreover , the inequalities (2.4) and (2.6) define the boundedness of the operator  .  
 
Lemma 2: The integral operator  is continuous and contraction in the Banach space 

 
 
Proof : For the two functions  and  in , the formulas (2.1) and 
(2.2) after using the conditions   and  ,   yield: 

  .               (2.7) 
From inequality (2.7), we see that the operator  is continuous in the Banach space 

 . Moreover ,  is a contraction operator under the condition . 
 
Proof of Theorem 1 : The lemmas (1) and (2) show that, the operator  of (2.1) is contractive in 
the Banach space . So, from Banach space fixed point theorem,  has a unique 
fixed point which is ,of course, the unique solution of eq.(1.1). 
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3. System of Urysohn Integral Equations  
In this section, a quadratic numerical method is used [7]-[9], in the mixed integral equation 

(1.1), to  obtain a system of Urysohn integral equations.   Therefore, we divide the interval  
into  subintervals, by means of the points: ,where

, then  the Fredholm integral term of eq. (1.1) becomes: 

 

where h is the step size of integration and  are the 
weights, in eq.  (3.1) is the order of 
sum of errors of the numerical method after dividing the interval , and the difference between 
the integration and summation, where the error is determined by: 

 

Replacing (3.1) in (1.1) and neglecting  , we get: 

 

Here, in (3.3) we used the following notations: 
 

 

The formula (3.3) represents a SUIEs of the second kind. 
 
Remark 1: Let E be the set of all continuous functions 

 for all p, and define on E the norm:  
 

Then E is a Banach space. 
 
Definition 1: The following relation determines the estimate local error: 

 

 
3.1.The existence of a Unique Solution of SUIEs 
In order to guarantee the existence of a unique solution of the SUIEs (3.3) in the Banach space E, 
we write the SUIEs (3.3) in the integral operator form: 

 

where 

 

Then we assume in addition to condition (ii) of theorem (1), the following conditions: 
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(3) The known continuous functions satisfy for the constants  and 
 the following conditions: 

 

 
 
Theorem 2: The SUIEs (3.3) has a unique solution in the space  under the following condition: 

 

 
Proof : In view of the two formulas (3.6) and (3.7) ,we have: 

 . 

By using the formula (3.4) , the conditions (1) - ( (3-  and finally the condition (ii) , the above 
inequality takes the form: 

 

The previous inequality (3.8) shows that , the operator maps the ball  into itself , where: 

 

Since  and   , therefore we have . Also, the inequality (3.8) involves the 
boundedness of the operator   , where: 

  .                                            (3.10) 
Moreover , the inequalities (3.8) and (3.10) define the boundedness of the operator  .  
    For the two functions  and  in , the formulas (3.6) and (3.7),  after using the 
conditions  and  ,  yield: 

  .              (3.11) 
In view of inequality (3.11), we see that the operator  is continuous in the Banach space  . 
Moreover,  is a contraction operator under the condition . 
From Banach space fixed point theorem,  has a unique fixed point which is of course, the unique 
solution of SUIEs (3.3) . 
 
4. The Modified Toeplitz Matrix Method (MTMM) 

Here, we present the MTMM to obtain the numerical solution of a UIE of the second kind with 
singular kernel.  Therefore, we assume the UIE: 

 

Following the same way of Abdou et al., [10-13], we can apply the MTMM for Urysohn term to 
obtain the following equation:  

 

Putting , in (4.2) and using the following notations : 
e get the following NAS: 
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where: 

 

 

 

 
and: 

 

 
The matrix  can be written in the Toeplitz matrix form :  here, the 

matrix is called the Toeplitz matrix of order 
(N+1) and  
represents a matrix of order  whose elements are zeros except the first and the last rows 
(columns). 
 
Definition 2: The TMM is said to be convergent of order r, if and only if for sufficiently large N, 
there exists a constant independent on N such that: 

 
 
Definition 3: The estimate local error  takes the form:  

 

 
Lemma 3: If the kernel  of eq. (1.1) satisfies condition (ii) of theorem (1) and the 
following condition:  

 

 

 
Proof: From formula (4.4), we have: 

 

 

Summing from to , then taking in account the continuity of the function in 
the interval and finally using the condition , there exists a small constant , such that  
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Similarly, we get: 

 

In the light of (4.4), and the help of (4.8) and (4.9), there exists a small constant  , such that: 

 

 

 
Also, for  we get: 

 

 

summing from to n  , taking in account the continuity of the function , then putting    
 , and using the condition (4.7), we get:  

 

 

Finally, we have: 

 

 
5. The Existence of a Unique Solution of NAS  
The SUIEs (3.3) after using MTMM takes the form  

 

where: 

 

  To  guarantee the existence of a unique solution of the NAS (5.1) in the Banach space ,  we 
write the NAS (5.1) in the integral operator form: 

 

where: 
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we assume the following conditions: 
 

 

 The known continuous functions  satisfy for the constants  and 
 the following conditions: 

 

 
 
Theorem 3: The formula (5.1) has a unique solution in the space  under the following condition: 

 

Proof : From the formulas (5.2) and (5.3) ,we obtain 

 

In view of the conditions ( ) - ( ( -  , the above inequality takes the form: 

 

 
The previous inequality (5.4) shows that , the operator maps the ball  into itself , where: 

 

Since  and   , therefore we have . Also, the inequality (5.4) involves the 
boundedness of the operator   , where:  

  .                                                 (5.6) 
Besides, the inequalities (5.4) and (5.6) define the boundedness of the operator  .  
       For the two functions  and  in , the formulas (5.2) and (5.3) yield: 

 

Using the conditions  and  , the above inequality takes the form: 
  .                                             (5.7) 

In view of inequality (5.7) , we see that the operator  is continuous in the Banach space  . 
Moreover,  is a contraction operator under the condition . 
From Banach space fixed point theorem ,  has a unique fixed point which is of course, the 
unique solution of NAS (5.1) . 
 
Definition 4:  The following relation determines the estimate total error : 

 

when  , the sums:  
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and the solution of the NAS (5.1) becomes the solution of Eq. (1.1) . 
 
Theorem 4: If the sequence of continuous functions  converges uniformly to the function 

 in the space , then under the conditions of theorem (1), the sequence 
 converges uniformly to the exact solution of Eq. (1.1) in . 

 
Proof: The formula (1.1) with its approximate solution gives: 

 

 

In view of the conditions of theorem 1, we get: 

 

Hence,  since  as   . 
 
Corollary1:   
 
6.  Applications 

In this section, we will consider the F-UIE: 

 

The results are obtained numerically by Maple 18 software, for , with 
 and , and the parameter . The time interval  is divided to  intervals, 

where the exact solution is   . 
 

Application 1: In eq. ( ), the Urysohn kernel takes the logarithmic form . 
 

Table (1) ,   
 

X EXACT    
APP ERR APP ERR APP ERR 

-1 3.600E-05 3.587E-05 1.302E-07 3.569E-05 3.106E-07 3.540E-05 6.048E-07 
-0.6 1.296E-05 1.289E-05 7.434E-08 1.278E-05 1.771E-07 1.262E-05 3.440E-07 
-0.2 1.440E-06 1.421E-06 1.936E-08 1.394E-06 4.608E-08 1.351E-06 8.941E-08 
0.2 1.440E-06 1.459E-06 1.895E-08 1.485E-06 4.509E-08 1.527E-06 8.749E-08 
0.6 1.296E-05 1.300E-05 4.064E-08 1.306E-05 9.680E-08 1.315E-05 1.880E-07 
1 3.600E-05 3.597E-05 3.426E-08 3.592E-05 8.173E-08 3.584E-05 1.592E-07 

 
Table (2) ,   

 
X EXACT    

APP ERR APP ERR APP ERR 
-1 1.600E-03 1.602E-03 1.862E-06 1.604E-03 4.441E-06 1.609E-03 8.647E-06 

-0.6 5.760E-04 5.760E-04 1.451E-08 5.760E-04 3.456E-08 5.759E-04 6.713E-08 
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-0.2 6.400E-05 6.392E-05 8.215E-08 6.380E-05 1.955E-07 6.362E-05 3.794E-07 
0.2 6.400E-05 6.409E-05 8.810E-08 6.421E-05 2.097E-07 6.441E-05 4.068E-07 
0.6 5.760E-04 5.765E-04 4.965E-07 5.772E-04 1.183E-06 5.783E-04 2.297E-06 
1 1.600E-03 1.602E-03 2.288E-06 1.605E-03 5.458E-06 1.611E-03 1.063E-05 

 
Table (3) , T=0.2 

 
X EXACT    

APP ERR APP ERR APP ERR 
-1 4.000E-02 4.001E-02 1.224E-05 4.003E-02 2.906E-05 4.006E-02 5.615E-05 

-0.6 1.440E-02 1.440E-02 9.506E-07 1.440E-02 2.260E-06 1.440E-02 4.378E-06 
-0.2 1.600E-03 1.600E-03 1.932E-07 1.600E-03 4.597E-07 1.599E-03 8.916E-07 
0.2 1.600E-03 1.600E-03 2.324E-07 1.601E-03 5.531E-07 1.601E-03 1.073E-06 
0.6 1.440E-02 1.440E-02 2.227E-06 1.441E-02 5.294E-06 1.441E-02 1.026E-05 
1 4.000E-02 4.001E-02 1.331E-05 4.003E-02 3.159E-05 4.006E-02 6.102E-05 

 

Application 2: In eq. (6.1), we assume that the Urysohn kernel takes the Carleman function 

, where   is called Poisson ratio. 
 

Table (4) , T=0.006 
 

X EXACT    
APP ERR APP ERR APP ERR 

-1 3.600E-05 3.594E-05 6.166E-08 3.585E-05 1.471E-07 3.571E-05 2.865E-07 
-0.6 1.296E-05 1.292E-05 4.494E-08 1.285E-05 1.071E-07 1.275E-05 2.080E-07 
-0.2 1.440E-06 1.428E-06 1.241E-08 1.410E-56 1.440E-06 1.383E-06 5.732E-08 
0.2 1.440E-06 1.452E-06 1.221E-08 1.469E-06 2.907E-08 1.496E-06 5.641E-08 
0.6 1.296E-05 1.299E-05 2.898E-08 1.303E-05 6.902E-08 1.309E-05 1.341E-07 
1 3.600E-05 3.601E-05 1.370E-08 3.609E-05 9.181E-07 3.607E-05 7.218E-07 

 
Table (5) , T=0.04 

 
X EXACT    

APP ERR APP ERR APP ERR 
-1 1.600E-03 1.602E-03 2.192E-06 1.605E-03 5.229E-06 1.610E-03 1.018E-05 

-0.6 5.760E-04 5.761E-04 1.195E-07 5.763E-04 2.847E-07 5.766E-04 5.529E-07 
-0.2 6.400E-05 6.395E-05 5.122E-08 6.388E-05 1.219E-07 6.376E-05 2.366E-07 
0.2 6.400E-05 6.406E-05 5.823E-08 6.414E-05 1.386E-07 6.427E-05 2.689E-07 
0.6 5.760E-04 5.764E-04 4.481E-07 5.771E-04 1.067E-06 5.781E-04 2.073E-06 
1 1.600E-03 1.602E-03 2.466E-06 1.606E-03 5.883E-06 1.611E-03 1.146E-05 

 
Table (6) , T=0.2 

 
X EXACT    

APP ERR APP ERR APP ERR 
-1 4.000E-02 4.007E-02 6.604E-05 4.016E-02 1.569E-04 4.030E-02 3.032E-04 

-0.6 1.440E-02 1.441E-02 8.138E-06 1.442E-02 1.929E-05 1.444E-02 3.716E-05 
-0.2 1.600E-03 1.600E-03 3.133E-08 1.600E-03 7.576E-08 1.600E-03 1.510E-07 
0.2 1.600E-03 1.600E-03 2.423E-07 1.601E-03 5.755E-07 1.601E-03 1.113E-06 
0.6 1.440E-02 1.441E-02 8.960E-06 1.442E-02 2.125E-05 1.444E-02 4.097E-05 
1 4.000E-02 4.007E-02 6.673E-05 4.016E-02 1.585E-04 4.031E-02 3.064E-04 

 
From the numerical results, we notice that: 

1) The error values increasing at the end points of the interval  
2) The maximum value of the error for the Carleman case is 3.064E-04 , at  
and . 
3) The maximum value of the error for the logarithmic case is 6.102E-05, at 

  and  .  4) For fixed values of λ  , the error values are increasing with the increase  of time , since the 
increasing of time causes more deformation of the materials. 
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5) The change in the values of the elasticity modules   or in the values of the Poison ratio   
cause lightly effective in the numerical results. 
6) In general, the error values of the logarithmic kernel are lower than the error values of the 
Carleman kernel. 
 
7.  Conclusions  

By the current research, we investigated a mixed integral equation of the second kind with two 
integral terms; the first is a linear integral term of Fredholm considered in position with continuous 
kernel, while the second is a nonlinear integral term of Urysohn in time with singular kernel. The  
Banach fixed point theorem has been used to prove the existence and uniqueness solution of 
Fredholm-Urysohn integral equation of the second kind in the space . A quadratic 
numerical method has been used to obtain a system of Urysohn integral equations of the second 
kind in time . Moreover, the modified Toepliyz matrix method, as a best numerical method, has 
been used to obtain a nonlinear algebraic system. Many important theorems related the existence of 
a unique solution of the system of Urysohn integral equations, the nonlinear algebraic system and 
the estimate error are considered.  Alo, the stability of the solution of Fredholm- Urysohn integral 
equation is proved. 

Many different cases can be established when the mixed integral equation takes special forms . 
For example the mixed integral equation of the second kind in n- dimensional: 

 

where  and  the domain of integration  is a closed 
bounded set depends on the vector of position .  
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