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Abstract 
For the design of the future spacecraft with no speed limits, as its speed could approach the speed 
of light, the new theory of “Universal Mechanics” is introduced and investigated. The proposed 
theory of “Universal Mechanics” consists of the combination of the theories of “Relativistic 
Elasticity” and “Relativistic Thermo-Elasticity”. Such theory is applied for non-linear airframes. 
Hence, according to the above theories there is a considerable difference between the absolute 
stress tensor and the stress tensor of the non-linear airframe. For very big speeds of the future 
spacecraft, like c/3, c/2 or 3c/4 (c=speed of light), then the difference between the two stress 
tensors is very much increased. Consequently, for the future spacecraft with very high speeds, the 
relative stress tensor will be therefore very much different than the absolute stress tensor. In 
addition, for velocities near the speed of light, then the values of the relative stress tensor are very 
much bigger than the corresponding values of the absolute stress tensor. The theory of “Relativistic 
Elasticity” is a combination between the theories of "Classical Elasticity" and "Special Relativity" 
and results in the “Universal Equation of Elasticity”. Moreover, the theory of “Relativistic 
Thermo-Elasticity” is a combination between the theories of "Classical Thermo-Elasticity" and 
"Special Relativity" and results in the “Universal Equation of Thermo-Elasticity”. So, the 
“Universal Equation of Elasticity”, and the “Universal Equation of Thermo-Elasticity” are parts of 
the general theory of “Universal Mechanics”.   
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1. Universal Mechanics for Non-linear Airframes 

The scope by the International Space Agencies is to achieve in the future, an absolute spacecraft 
moving with very high speeds, even approaching the speed of light. Such future spacecraft would 
behave like a non-linear airframe. Hence, how far could be this future ? According to the current 
investigation and research such future could be much closer than everybody believes. For the future 
spacecraft the relative stress tensor will be much different than the absolute stress tensor and so 
special solid should be used for the construction of the next generation spacecraft.  

Beyond the above, the suitable choice of the solid which should be used for the construction of 
the future spacecraft is under investigation, but such solid will be very much different than the 
usual composite materials.  

Consequently, it will be shown that there is a significant difference between the absolute stress 
tensor and the stress tensor of the airframe even for lower speeds. In addition, for bigger speeds the 
difference of the two stress tensors will be very much increased. So, for bigger velocities like c/3, 
c/2 or 3c/4 (c=speed of light) the relative stress tensor is very much different than the absolute one 
and for velocities near the speed of light the values of the relative stress tensor are much bigger 
than the corresponding values of the absolute stress tensor. The study of the connection between 
the stress tensors of the absolute frame and the non-linear airframe is included in the theory 
proposed by E.G.Ladopoulos [30] - [32] under the term “Relativistic Elasticity” and “Relativistic 
Thermo-Elasticity” and the final formula which results from the above theories is called the 
“Universal Equation of Elasticity” and the “Universal Equation of Thermo-Elasticity”, 
correspondingly.
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Both theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity” are included in a 
more general theory under the term “Universal Mechanics”.  

In addition, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular 
integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the 
above mentioned publications the Singular Integral Operators Method (S.I.O.M.) is proposed for 
the numerical solution of the multidimensional singular integral equations in which the stress 
tensor analysis of the linear elastic theory is reduced. Also, the theory of linear singular integral 
equations was extended to non-linear singular integral equations, too. [23]-[29]. Thus, the theory of 
“Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and 
“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the 
airframes.  

Moreover, the classical theory of elastic stress analysis and thermo-elastic stress analysis began 
to be analyzed in the early nineteenth century and was further developed during the twentieth 
century. In the past, several important monographs were published on the classical theory of 
elasticity and thermo-elasticity. [33]-[52].  

Over the past years special attention has been given, by many scientists worldwide, on the 
theoretical aspects of the special theory of relativity. Consequently, some classical monographs 
were written, dealing with the theoretical foundations and investigations of the special and the 
general theory of relativity. [53]–[60]. In addition, by the current research and investigation will be 
shown that the "relative stress tensor is not symmetrical", while, as it is well known, the 
"absolute stress tensor is symmetrical". Such a difference is very important for the design of the 
future spacecraft of very high speeds.  

          

2. Relativistic Elasticity - Universal Equation of Elasticity for Non-linear Airframes 
 
Consider the state of stress at a point in the stationary frame S0, defined by the following 

symmetrical stress tensor: (Fig.1)  
 
 

                                                                                                        (2.1) 

















0
33

0
32

0
31

0
23

0
22

0
21

0
13

0
12

0
11

0







 
 

where:                                                                                         (2.2) 0
23

0
32

0
13

0
31

0
12

0
21 ,,  

 
 
In addition, consider an infinitesimal face element  df  with a directed normal, defined by a unit 

vector  n, at definite point  p  in the three-space of a Lorenz system. The matter on either side of 
this face element experiences a force which is proportional to  df. 

 
Hence, the force is valid as: 
 

                                                                    fd)()(d nσnσ                                                  (2.3) 
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Fig. 1 The state of stress  σ ik

0  in the stationary system  S . 0

 
The components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  
                                                             3,2,1,,)(  kinkiki  n                                                  (2.4) 
 
in which  σik  is the elastic stress tensor, also called as the relative stress tensor, in contrast to the 

space part  ik   of the total energy-momentum tensor  Tik,  referred as the absolute stress tensor. 
[53], [54} (Fig. 2). 

0

 
 
 

 
 

Fig. 2  The state of stress σ  in the stationary system S and σ ik  in the airframe system with velocity  u  

parallel to the x - axis. 
ik
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Moreover, the connection between the absolute and relative stress tensors is defined as: 
 

                                                                                    (2.5) 3,2,1,,0  kiug kiikik 
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where  gi  are the components of the momentum density  g  and  uk  the components of the velocity  
u  of the matter. 

 
The connection between  g  and the energy flux  s,  is equal to: 
 

                                                                              2csg                                                             (2.6) 
 
in which  c  denotes the speed of light (= 300.000 km/sec). 

 
Beyond the above, the total work done per unit time by elastic forces on the matter inside the 

closed surface  f  can be given by the formula: 
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where the integration in the last integral is extended over the interior  υ  of the surface  f. 

 
So, the work done on an infinitesimal piece of matter of volume  δυ  is valid as: 
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Furthermore, (2.8) must be equal to the increase per unit time of the energy inside  δυ: 
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in which  h  denotes the total energy density, including the elastic energy and  tdd  is the 
substantial time derivative. 

 
Eq. (2.9) is valid as: 
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which finally leads to the relation: 
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Hence, the total energy flow is valid as: 
 

                                                                       )( σuhus                                                        (2.12) 
 
where    is a space vector with components  )( σu  ikik u  )( σu . 

 
 
So, the total momentum density can be written as: 
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in which  2ch   denotes the total mass density, including the mass of the elastic energy. 
 

From (2.5) and (2.13) one has: 
 

                                    ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u        (2.14) 
 
which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 
tensor (2.1) which is symmetrical. 

 

In the stationary frame  S0  the velocity    and thus, from (2.5), (2.12) and (2.13) the 
following expressions are obtained: 

00 u

                             

                                                                                          (2.15) )3,2,1,(00  kikikiikik 
 
Moreover, the mechanical energy-momentum tensor satisfies the following relation: 
 

                                                                                                                             (2.16) ikik UhUT 0
 

where  Ui  is the four-velocity of the matter, in the Lorentz system and  . ),0,0,0(0 icU i 
 
Consequently, the following scalar can be formed: 
 

                                             )( 1
00

44
20002 xhTcUTUcUTU kikikiki                                   (2.17) 

 

with   the invariant rest energy density considered as a scalar function of the coordinates  
(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

)( 1
0 xh

 
Furthermore, by applying the tensor: 
 

                                                      2cUU kiikik                                           (2.18) 
 
which satisfies the relations: 
 
                                                                  0 kikiki UU                                               (2.19) 
 
then, the following symmetrical tensor can be formed: 
 
                                                                kimkmiik STS  11                                                   (2.20) 
 
which is orthogonal to  Ui: 
 
                                                                   0 kikiki USSU                                                     (2.21) 

 
 
By combining eqs. (2.16), (2.17) and (2.20) we obtain: 

                                                                   20 cUUhTS kiikik                                               (2.22) 
 

Also, in the stationary system  S0  we have: 
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Eq. (2.22) may also be written as: 
 

                                                                         ikikik ST                                                         (2.24) 
in which: 
 
                                                   kikiik UUcUUh 020                                    (2.25) 
 
is the kinetic energy-momentum tensor for an elastic body and: 
 
                                                                            200 ch                                               (2.26) 
 
is the proper mass density. 

 
We introduce further in every system  S  the quantity: 
 

                                                                 44 UUSS kiikik                                                (2.27) 
 
which, on account of (2.24) and (2.25) is valid as: 
 
                                                                  44 UUTT kiikik                                                (2.28) 

 
From (2.1) and (2.2) the three-tensor: 
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in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors  
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The eigenvalues  ,  the principal stresses, are the three roots of the following algebraic 

equation, where  λ  is the unknown: 
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The matrix    can be further written in terms of the eigenvalues and eigenvectors as: 0
ikS

 
 
 

                                                                                             0)(0)(0
)(

00 j
k

j
ijikik hhpS     (2.31) 

         
Then, from eqs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in  So: 
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So, in any system  S  we have: 
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From (2.24), (2.25), (2.27) and (2.33) follow the expressions:  
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By putting: 
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and introducing the notation    for the direct product of the vectors  a  and  b,  then eqn (2.35) 
can be written for the relative stress tensor  σ  as following: 
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Beyond the above, the triad vectors    satisfy the tensor relations: )( j
ih
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with  Δik  given by (2.18). 

 
If the stationary system  S0  for every event point is chosen in such a way that the spatial axes in 

S0 and in  S  have the same orientation, we have: 
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From (2.34) and (2.40) with  i = k = 4  follows: 
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In the stationary system, (2.37) reduces to:     
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Hence, from (2.42) we have the following transformation law for the energy density: 
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and the mass density: 
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rom (2.40) and (2.34) with  k = 4, one obtains the momentum density  g  with the components  F
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nd the relative stress tensor gives the Universal Equation of Elasticity: 
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where γ is given by (2.41).  
 

Finally, as it could be easily seen the relative stress tensor is not symmetrical, in contrast to the 
 symmetrical. 

 
3. Theory of Relativistic Thermo-Elasticity - Universal Equation of Thermo-Elasticity for 

e system under investigation, which is the elastic body, was regarded 
 

kind of thermodynamical processes may be described 

ear that all properties in which heat energy is transferred from one part of 
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uction can take place, while the motion of the visible matter is 
escribed by the four-velocity .  Then the energy-momentum tensor of the general system can 

be 

                                    

absolute stress tensor which is

Non-linear Airframes 
In the previous section th

as a purely mechanical system. However, all macroscopic systems are in reality thermo-dynamical 
systems with properties depending on non-mechanical variables such as the proper temperature T o, 
nd so the question which arises is to what a

by an energy-momentum tensor. 
 

Consequently, it is cl
 system to another are excluded, for heat flow in the manner would give rise to a non-vanishing 

energy current in the rest system.  
 

Consider further a general system of continuously distributed ponderable or visible matter, 
inside which invisible heat cond

  iUd
given by the following relation: 

 HMT ikikik                                                               (3.1) 

Furthermore, the mechanical part    is valid by the following formula:   
 
                                                

where  ikM   denotes the mechanical part of the energy-momentum tensor and  ikH   the heat part. 
 

ikM
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and the heat part:    
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in which  0d   denote the normalized  ik   is th
otential part of the energy momentum tensor. 

The four-vector    is orthogonal to  
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0ii VU                
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wh ter
 

es to:   

                                                          

ere  u   denotes the velocity of the mat . 

So, in the statio
 

nary system, (3.6) reduc

 0,00 ViV                                                        (3.7) 
  

In addition, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then one has 
instead of (2.22): 
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red relation (3.1), instead of (2.24). 
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he velocity

energy-momentum tensor 
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Consequently, from (3.8) follows the requi

isible heat conduction can take place, while the motion of the matter is described by the four-
velocity  iU   or by t   iu . 

 
Then, for the connection between the  ikT   and the relative stress 

 of the general system, the following relation is valid:   te  ik
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in whic   denotes the four-vector given by (3.4),  ig   the mom

      

h entum density and  c  the speed 
of light. 
 

 kV

The quantity  k   seems to be  the most important part of ik :    
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                                  (3.13) 

In the stationary system,  ξ   is equal to the heat current density  V :   
00

0 0
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So, by using (2.35), (3.1), (3.2), (3.11) and (3.15), we obtain:   
 

                                 2cUUUT                     (3.16) 44T kiikikikkiik  
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uation of Thermo-Elasticity: 
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  is the total mass density. 
 

From (3.9), we obtain for the energy current density:   
 
              

where  u  denotes the velocity of the matter at the place and time considered,  σ  the relative stress 

tensor,  ξ  is given by (3.13) and  2/ cEm 
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which can be further written as:   
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So, from (3.19) by using the formula of the momentum density  g:   
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the principal of virtual displacements, for linear elastic problems then the following 
rmula is valid:  
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Universal Mechanics by Elastic Stress Analysis for Non-linear Ai
C
ich isplacements are presented,  Γ2  the surface of the body on which the force tractions are 

e
 
Also, for 

fo

  d)(d)( 0
, kkkkkjjk uppub                                     (4.1)                                      

 2

in which  uk  are the virtual displacements, satisfying the homogeneous boundary conditions  

0ku   on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  of the body. 
(Fig. 3) 
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Fig. 3 The stationary system   
 

S 0 .

 
Eqn (4.1) can be further written as following if  uk  do not satisfy the previous conditions on  Γ1: 
 

                               
 12

 d)(d)(d)( 0
, kkkkkkkkjjk puuupub                    (4.2) 

 

where  the  uk  system. 

Then, by integrating (4.2) follows: 
 

                    

p

0 jkjk np   are the surface tractions corresponding to 

 

 

  


jkjkkk




112

d)(dddd 0
kkkkkkk puuupupub         (4.3) 

 which
 
in  jk   are the strains. 

By a second integration then (4.3) reduces to: 
  

    

 

                                    




 dd upup









2112

dd

dd 0
,

kkkkkkkk

kjjkkk

pupu

uub 

                     (4.4) 

 
ntal solution should be found, satisfying the equ brium

following type: 
 

                                                                                                                       (4.5) 

delta function which represents a unit load at  i  in the  l  direction. 

In addition, a fundame ili  equations, of the 

00  i    , ljjk

 

where  i   denotes the Dirac l

 
The fundamental solution for a three-dimensional isotropic body is: [31] 
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                                       

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


kl
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rvG
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
)43(

)1(16
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
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



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kl
lklk x

r*

x

r
v

n

r

rv
p





3)21(

)1(8

1
2

                     (4.6) 

   













 l

k
k

l

n
x

r
n

x

r
v







)21(  

 
in which  G  is the shear modulus,  v  Poisson’s ratio,  n  the normal to the surface of the body,  lk   

Kronecker’s delta,  r  the distance from the point of application of the load to the point unde  
consideration and  nj  the direction cosines (Fig.3). 
 

The displacements at a point are given as followi

r

ng: 
 

 

                                                            (4.7) 

Consequently, (4.7) takes the following form for the  “l”  component: 

                                 (4.8) 

By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 
me ium: 

                                                         

 

                              


 ddd bupuupui  

 

 

                                                    ddd lkkklkklk
i
l ubuppuu



 

d
 
















i

j

j

i

l

l
ijij x

u

x

u
G

x

u

v

Gv











21

20                                  (4.9) 

Beyond the above, after carrying out the differentiation we have: 
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
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


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Eq. (4.10) can be further written as follows: 

    

                                                        (4.11) 

in which the third order tensor components  Dkij  and  Skij  are: 

 
           

                    


 ddd0
kkijkkijkkijij bDuSpD
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                                      kjikijikjjkikij rrrr
rv

...,,,2
3(

)1(8



               (4.12) 

                              

rrvD )21
1



  
 




 kjiijkjikkijkij rrrrrvrv

n

r

rv

G
S ,,,,,,3

5)()21(3
)1(4

 

ijkjkiikjjikkijkji nvnnrrnvrrnrrnv  )41()3)(21()(3 ,,,,,,                               (4.13) 

with:  
i

i x

r
r


,  

 
inally, because of eqs (2.49) and (4.11) by considering the moving system  S  of Fig. 2, then 

the
 

    

 

       

F
 stress-tensor reduces to the following form: 

0
1111    

     0
1212    

     0
1313    

0
2121

1


   

                                                                                                                             (4.14) 

        

0
2222  

         0
2323  

0  3131

1


   

        

where    are given by. (4.11) to (4.13)

o, Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values of the velocity  u  
of 

 

Table 1 

Velocity  u 

0
3232    

          0
3333  

0
ij . 

 
S
the moving aerospace structure: 

  1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000  1.000000001    0.800c    1.666666667 km/h
100,000 km/h 1.000000004    0.900c    2.294157339 
200,000 km/h 1.000000017    0.950c    3.202563076 
500,000 km/h 1.000000107    0.990c    7.088812050 
10Ε+06  km/h 1.000000429    0.999c    22.36627204 
10Ε+07  km/h 1.000042870     0.9999c     70.71244596 
10Ε+08  km/h 1.004314456     0.99999c     223.6073568 
2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 
         c/3 1.060660172     0.9999999c     2236.067978 
         c/2 1.154700538     0.99999999c     7071.067812 
        2c/3 1.341640786     0.999999999c     22360.67978 
        3c/4 1.511857892 C      

 
 velocities 50,000 km/h  to  200,0 /h and 

the
From Table 1 follows that for small 00 km , the absolute 
 relative stress tensor are nearly the same. On the other hand, for bigger velocities like  c/3, c/2  

or  3c/4  (c = speed of light), the variable  γ  takes values more than the unit and thus, relative stress 
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tensor is very different from the absolute one. In addition, for values of the velocity for the moving 
structure near the speed of light, the variable  γ  takes bigger values, while when the velocity is 
equal to the speed of light, then  γ  tends to the infinity. 

Consequently, the Singular Integral Operators Method (S.I.O.M.) as was proposed by 
E.G

. Conclusions 
nt research in the area of aerospace and aeronautical technologies the theory of 

“U

quation of 
Ela

the structural design of the next generation spacecraft will be used the stress 
ten

eferences 
os E.G., ‘On the numerical solution of the finite – part singular integral equations of the first 

uations used in two and three-

y fracture problem’, 

ith the Gegenbauer polynomials for singular integral 

ite-part singular integrals and 

tions with 

ls and integral 

. 

gular integro-differential equations arising in two-dimensional 

integral approximations used in three-dimensional 

mensional elasto – plastic stress 

ators method for two – dimensional elasto – plastic stress 

lization of the Sokhotski – Plemelj formulae for the 

.Ladopoulos [4], [8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for 
the numerical evaluation of the stress tensor (3.11), for every specific case.  
 
5

By the curre
niversal Mechanics” has been investigated and applied for the design the future spacecraft 

moving with very high speeds, even approaching the speed of light, as the plan of the International 
Space Agencies is to achieve such spacecraft in the future. Such new generation spacecraft was 
studied like a non-linear airframe. The future investigation concerns to the determination of the 
proper composite  materials or any other kind of materials for the construction of the next 
generation spacecraft, as usual composite solids are not suitable for such constructions. 

The theory of “Universal Mechanics” and correspondingly the “Universal E
sticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable 

difference between the absolute stress tensor of the airframe even for lower speeds. For bigger 
speeds the difference between the two stress tensors is very much increased. “Universal 
Mechanics” results as a combination of the theories of "Relativistic Elasticity" and "Relativistic 
Thermo-Elasticity".   

Consequently, for 
sor of the airframe in combination to the singular integral equations. Such a stress tensor is 

reduced to the solution of a multidimensional singular integral equation and for its numerical 
evaluation will be used the Singular Integral Operators Method (S.I.O.M.). 
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