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Abstract

For the design of the future spacecraft with no speed limits, as its speed could approach the speed
of light, the new theory of “Universal Mechanics” is introduced and investigated. The proposed
theory of “Universal Mechanics” consists of the combination of the theories of “Relativistic
Elasticity” and “Relativistic Thermo-Elasticity”. Such theory is applied for non-linear airframes.
Hence, according to the above theories there is a considerable difference between the absolute
stress tensor and the stress tensor of the non-linear airframe. For very big speeds of the future
spacecraft, like c/3, c/2 or 3c/4 (c=speed of light), then the difference between the two stress
tensors is very much increased. Consequently, for the future spacecraft with very high speeds, the
relative stress tensor will be therefore very much different than the absolute stress tensor. In
addition, for velocities near the speed of light, then the values of the relative stress tensor are very
much bigger than the corresponding values of the absolute stress tensor. The theory of “Relativistic
Elasticity” is a combination between the theories of "Classical Elasticity" and "Special Relativity"
and results in the “Universal Equation of Elasticity”. Moreover, the theory of “Relativistic
Thermo-Elasticity” is a combination between the theories of "Classical Thermo-Elasticity” and
"Special Relativity" and results in the “Universal Equation of Thermo-Elasticity”. So, the
“Universal Equation of Elasticity”, and the “Universal Equation of Thermo-Elasticity” are parts of
the general theory of “Universal Mechanics”.
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1. Universal Mechanics for Non-linear Airframes

The scope by the International Space Agencies is to achieve in the future, an absolute spacecraft
moving with very high speeds, even approaching the speed of light. Such future spacecraft would
behave like a non-linear airframe. Hence, how far could be this future ? According to the current
investigation and research such future could be much closer than everybody believes. For the future
spacecraft the relative stress tensor will be much different than the absolute stress tensor and so
special solid should be used for the construction of the next generation spacecraft.

Beyond the above, the suitable choice of the solid which should be used for the construction of
the future spacecraft is under investigation, but such solid will be very much different than the
usual composite materials.

Consequently, it will be shown that there is a significant difference between the absolute stress
tensor and the stress tensor of the airframe even for lower speeds. In addition, for bigger speeds the
difference of the two stress tensors will be very much increased. So, for bigger velocities like c/3,
¢/2 or 3c/4 (c=speed of light) the relative stress tensor is very much different than the absolute one
and for velocities near the speed of light the values of the relative stress tensor are much bigger
than the corresponding values of the absolute stress tensor. The study of the connection between
the stress tensors of the absolute frame and the non-linear airframe is included in the theory
proposed by E.G.Ladopoulos [30] - [32] under the term “Relativistic Elasticity” and “Relativistic
Thermo-Elasticity” and the final formula which results from the above theories is called the
“Universal Equation of Elasticity” and the “Universal Equation of Thermo-Elasticity”,
correspondingly.
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Both theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity” are included in a
more general theory under the term “Universal Mechanics”.

In addition, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular
integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the
above mentioned publications the Singular Integral Operators Method (S.1.0.M.) is proposed for
the numerical solution of the multidimensional singular integral equations in which the stress
tensor analysis of the linear elastic theory is reduced. Also, the theory of linear singular integral
equations was extended to non-linear singular integral equations, too. [23]-[29]. Thus, the theory of
“Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and
“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the
airframes.

Moreover, the classical theory of elastic stress analysis and thermo-elastic stress analysis began
to be analyzed in the early nineteenth century and was further developed during the twentieth
century. In the past, several important monographs were published on the classical theory of
elasticity and thermo-elasticity. [33]-[52].

Over the past years special attention has been given, by many scientists worldwide, on the
theoretical aspects of the special theory of relativity. Consequently, some classical monographs
were written, dealing with the theoretical foundations and investigations of the special and the
general theory of relativity. [53]-[60]. In addition, by the current research and investigation will be
shown that the "relative stress tensor is not symmetrical", while, as it is well known, the
"absolute stress tensor is symmetrical". Such a difference is very important for the design of the
future spacecraft of very high speeds.

2. Relativistic Elasticity - Universal Equation of Elasticity for Non-linear Airframes

Consider the state of stress at a point in the stationary frame S°, defined by the following
symmetrical stress tensor: (Fig.1)

0 0 0
013 O1p O3
o _| o 0 0
O =10, Oy Oy (2.1)
0 0 0

O3 O3z Og

. 0 0 0 0 0 0
where: Oy =04y, O3 =043, 03 =03 (2.2)

In addition, consider an infinitesimal face element df* with a directed normal, defined by a unit
vector n, at definite point p in the three-space of a Lorenz system. The matter on either side of
this face element experiences a force which is proportional to df.

Hence, the force is valid as:

da(n) = e(n)d f (2.3)
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Fig. 1 The state of stress ¢{ in the stationary system S° .
The components o,(n) of o(n) are linear functions of the components »; of n:
o,m)=0o,n,, i,k=123 (2.4)

in which ;. is the elastic stress tensor, also called as the relative stress tensor, in contrast to the
space part o) of the total energy-momentum tensor Ty, referred as the absolute stress tensor.
[53], [54} (Fig. 2).

Fig. 2 The state of stress o in the stationary system S° and o, in the airframe system with velocity «

parallel to the x ; - axis.

Moreover, the connection between the absolute and relative stress tensors is defined as:

O-i(;c = O-ik +giuk’ l!k :11213 (25)
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where g; are the components of the momentum density g and u, the components of the velocity
u of the matter.

The connection between g and the energy flux s, is equal to:
g= s/ c? (2.6)
in which ¢ denotes the speed of light (= 300.000 km/sec).

Beyond the above, the total work done per unit time by elastic forces on the matter inside the
closed surface f can be given by the formula:

W=j(c(n)-u)df=jaiknkuidf=—jwdu ik =123 2.7)
¥ 7 b M

where the integration in the last integral is extended over the interior » of the surface f.

So, the work done on an infinitesimal piece of matter of volume dv is valid as:

SW = _M&) (2.8)
Xk

Furthermore, (2.8) must be equal to the increase per unit time of the energy inside Jv:

%(k&u) = oW (2.9)

in which % denotes the total energy density, including the elastic energy and d/d¢ is the
substantial time derivative.

Eqg. (2.9) is valid as:

RS L LA P ST L N S (2.10)
dt 9t Ox, Xy 9t Ox,
which finally leads to the relation:
%+i(hu +u,0,)=0 (2.11)
St 9xk k i~ ik '
Hence, the total energy flow is valid as:
s=hu+(u-o6) (2.12)

where (u-o) isa space vector with components (u-o¢), =u,0,, .

So, the total momentum density can be written as:

S u-o
g=- =m0 (213)
c c
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inwhich u= h/c2 denotes the total mass density, including the mass of the elastic energy.
From (2.5) and (2.13) one has:
Oy —O =—gy +gu; = [-(u-0),u;, + (u'“)k”f]/c2 #0 (2.14)

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress
tensor (2.1) which is symmetrical.

In the stationary frame S° the velocity «° =0 and thus, from (2.5), (2.12) and (2.13) the
following expressions are obtained:

op =0, =0, =0y (i,k=12.3) (2.15)

Moreover, the mechanical energy-momentum tensor satisfies the following relation:

.U, =-hU, (2.16)
where U; is the four-velocity of the matter, in the Lorentz system and U 1.0 =(0,0,0,ic) .
Consequently, the following scalar can be formed:
UT,U,[c? =UTUL [¢? = =TS = h°(x,) (2.17)

with #°(x;) the invariant rest energy density considered as a scalar function of the coordinates
(x)(i=1,23) in S. (Fig. 2)

Furthermore, by applying the tensor:
Ay =68, +UU,[c? (2.18)
which satisfies the relations:
UA, =AU, =0 (2.19)

then, the following symmetrical tensor can be formed:

Sik =AuTh, A, = Ski (2-20)
which is orthogonal to U::
UjSy =8;U; =0 (2.21)

By combining egs. (2.16), (2.17) and (2.20) we obtain:
S, =T, —h°UU, /c? (2.22)

Also, in the stationary system S, we have:
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Sl =0y =0,,8,=S3=0 (2.23)
Eq. (2.22) may also be written as:
Ty =S + Sy (2.24)
in which:
&, =h°UU, [¢* = u’UU, (2.25)

is the kinetic energy-momentum tensor for an elastic body and:
w1’ =h"/c? (2.26)
is the proper mass density.
We introduce further in every system S the quantity:
o4 =S, —S,U, U, (2.27)
which, on account of (2.24) and (2.25) is valid as:
oy =Ty —T4U /U, (2.28)
From (2.1) and (2.2) the three-tensor:
Si?c = O-l'?( =0y

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors
h°Y) satisfy the orthonormality relations:

h(j)o ,h(P)O =5 (2293)
and:

RORO0 = 5. (j, p=123) (2.29b)

The eigenvalues p(oj), the principal stresses, are the three roots of the following algebraic
equation, where A is the unknown:

S5 — A48, |=|o — 25, |=0 (2.30)

The matrix S5 can be further written in terms of the eigenvalues and eigenvectors as:

Si = oq = plyh " (2.31)

Then, from egs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in S”:
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Si = iy h° (2.32)
So, in any system S we have:
Sy = plyh h (2.33)

From (2.24), (2.25), (2.27) and (2.33) follow the expressions:

Ty = U U, + plyhh” (2.34)
oy =Sy —SuU, /U4 = P?,’)h/s‘i) (h/gi) + ihz(lj)uk /C) (2.35)

By putting:
hD = (Y, (") (2.36)

and introducing the notation aeb for the direct product of the vectors a and b, then egn (2.35)
can be written for the relative stress tensor ¢ as following:

G = p(oj)[h(j) eh +£h§«” (h" ,u)}j ~123 (2.37)

Beyond the above, the triad vectors hl.(j ) satisfy the tensor relations:
hOn =57 (2.38)
BB = A, (2.39)

with 4, given by (2.18).

If the stationary system S° for every event point is chosen in such a way that the spatial axes in
S%and in S have the same orientation, we have:

h('/) _ h(_,-)o n {u(u-h(-/)o)(y—l)}/uz

(2.40)
hﬁj) = ju-hV° y/c
with:
y =1/ @-u?/c?)¥? (2.41)
From (2.34) and (2.40) with i = k=4 follows:
h=—Ty ==uUZ = p{y(w-hV%)?. 2 /c? (2.42)
In the stationary system, (2.37) reduces to:
6’ = pg) (h(j)o .h(‘/)o) (2.43)
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Hence, from (2.42) we have the following transformation law for the energy density:

hoJru-(ro~u/c2

h=
1—u2/62
(2.44)
U'GO-UZL!OTOM
i ik%k
and the mass density:
0 0 4
M +u-o -u/c
= 2.45
H /e (2.45)

From (2.40) and (2.34) with & = 4, one obtains the momentum density g with the components
g =Tylic:

g= u[h0 +u-¢° -u(l—}/_l)/uz];/z/c2 +(<s0 -u) 7//c2

(2.46)
(GO ~ll)l- = Ugc”k
In addition, from (2.40) and (2.35) one has the relative stress tensor:
6=c6"+ue(c’ -u)(y-/u’-(c° -u)ou(;/—l)/y/u2
(2.47)

~(ueu)(u-6®-u)(y -1/’

In the special case u = (#,0,0), where the notation of the matter at the point considered is
parallel to the x;-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47)

reduce to:
2
h = [ho +i—20'101J72

0
g, = 7{#0 + %}u

(2.48)
0
A
X3 CZ
0
_Yox
X3 cZ
and the relative stress tensor gives the Universal Equation of Elasticity:
0 0 0
Oy Oy Opg 10'11 V012 )O3
0 0 0
0=|0y3 Op Op|=|"0xn Op Oy (2.49)
O3 O3 Og3 1
0 0 0
—03 O3 Oz
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where y is given by (2.41).

Finally, as it could be easily seen the relative stress tensor is not symmetrical, in contrast to the
absolute stress tensor which is symmetrical.

3. Theory of Relativistic Thermo-Elasticity - Universal Equation of Thermo-Elasticity for

Non-linear Airframes

In the previous section the system under investigation, which is the elastic body, was regarded
as a purely mechanical system. However, all macroscopic systems are in reality thermo-dynamical
systems with properties depending on non-mechanical variables such as the proper temperature 7,
and so the question which arises is to what kind of thermodynamical processes may be described
by an energy-momentum tensor.

Consequently, it is clear that all properties in which heat energy is transferred from one part of
the system to another are excluded, for heat flow in the manner would give rise to a non-vanishing
energy current in the rest system.

Consider further a general system of continuously distributed ponderable or visible matter,

inside which invisible heat conduction can take place, while the motion of the visible matter is
described by the four-velocity U,. Then the energy-momentum tensor of the general system can

be given by the following relation:

T,=M,+H, (3.1)

1

where M, denotes the mechanical part of the energy-momentum tensor and #, the heat part.
Furthermore, the mechanical part A, is valid by the following formula:
M, =d°U, U, [c¢*+8, (3.2)
and the heat part:
H,=UV, +VU,)/c* (3.3)
where the four-vector ¥, satisfies the relation:
V,==0T,U, =-T, U, —d°U, (3.4)

inwhich d° denote the normalized eigenvectors, A, is the tensor given by (2.18) and P, the
potential part of the energy momentum tensor.

The four-vector ¥, is orthogonal to U,:
u,v. =0 (3.5)
and so one obtains:

V,=(V,i(V,u)/c) (3.6)
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where u denotes the velocity of the matter.
So, in the stationary system, (3.6) reduces to:
v =(v°,0) (3.7)

In addition, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then one has
instead of (2.22):

Sk :Tik_dOUiUk/CZ_(UinJFViUk)/CZ (3.8)
Consequently, from (3.8) follows the required relation (3.1), instead of (2.24).
Consider further the general system of continuously matter described previously inside which

invisible heat conduction can take place, while the motion of the matter is described by the four-
velocity U, or by the velocity u;.

Then, for the connection between the energy-momentum tensor 7, and the relative stress
tensor o, of the general system, the following relation is valid:

Ty =gu, +0oy +u, fk/cz (3.9)

L

with:
& =Uy V=V, U, U, )fic (3.10)

in which ¥, denotes the four-vector given by (3.4), g, the momentum density and ¢ the speed
of light.

The quantity &, seems to be the most important part of &, :
Sik :Hik_Hi4Uk/U4:Ui(Vk_V4Uk/U4)/CZ (3.11)
Beyond the above, &, can be written by the following form by using (2.41) and (3.6):

& =(&0) (3.12)

with:
g=7[V-u(v,u)c?] (3.13)

In the stationary system, &° is equal to the heat current density V°:
gt =v?° (3.14)

By combining (3.10) and (3.11), then one has:

& =U, &/ (3.15)

10
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So, by using (2.35), (3.1), (3.2), (3.11) and (3.15), we obtain:
Tik_TiAUk/U4:O-ik+§ik:O-ik+Ui§k/7cz (3.16)
which finally reduces to the required formula (3.9).

Let us consider the general system of continuously matter, inside which invisible heat
conduction can take place. Then the momentum density g of this system is given by the Universal
Equation of Thermo-Elasticity:

~—

(‘lf +c% (3.17)

g=mu+

where u denotes the velocity of the matter at the place and time considered, ¢ the relative stress
tensor, & isgiven by (3.13)and m = E/c? is the total mass density.

From (3.9), we obtain for the energy current density:

D, =Eu, +u,oy +¢, (3.18)
which can be further written as:

D:Eu+(u,c)+§ (3.19)
So, from (3.19) by using the formula of the momentum density g:
g =D/c? (3.20)

we obtain the required relation (3.17) which is a generalization, for a general system with heat
conduction.

4. Universal Mechanics by Elastic Stress Analysis for Non-linear Airframes

Consider the stationary frame of Fig. 1 with Iy the portion of the boundary of the body on
which displacements are presented, /7 the surface of the body on which the force tractions are
employed and I" the total surface of the body equal to I'j+1%.

Also, for the principal of virtual displacements, for linear elastic problems then the following
formula is valid:

J.(G.?ky./' +bJu, dQ = J.(pk _;k Ju, dIT" (4.1)
) T,

in which u;, are the virtual displacements, satisfying the homogeneous boundary conditions

ur =0 on Iy, b the body forces (Fig. 1) and p; the surface tractions at the point £ of the body.
(Fig. 3)

11
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Fig. 3 The stationary system $°.

Eqgn (4.1) can be further written as following if «, do not satisfy the previous conditions on 77:

[ +bu dQ= [ (p, = pJu, AT + (s —u,) p, AT
Q

FZ Fl
0 - -
where p, =n ;o are the surface tractions corresponding to the u; system.

Then, by integrating (4.2) follows:

jbkuk dQ—IO'?kgjk sz—jﬁkuk dF—J.pkuk dF+j(L7k —u,)p, dl’
Q Q I 0 I
in which ¢, are the strains.
By a second integration then (4.3) reduces to:

Ibkuk dQ+J‘0'?kyjuk dQ=
o) Q

_ I;k”k dF—kauk dl"-i—_[;kpk dr+jukpk dr
I, 0

8] I

(4.2)

(4.3)

(4.4)

In addition, a fundamental solution should be found, satisfying the equilibrium equations, of the

following type:

+A, =0

0
O-J'k WJ

(4.5)

where A’ denotes the Dirac delta function which represents a unit load at i in the / direction.

The fundamental solution for a three-dimensional isotropic body is: [31]

12
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N 1 & G
up =—————| B-4)A, +
162G —-v)r 19xl 19xk
. 1 8r Sr 3r
8r(Ll—v)r? 9n Sx, Sxk
—(1—2v){ﬂnk _ n,ﬂ
1 Xk

in which G is the shear modulus, v Poisson’s ratio, » the normal to the surface of the body, A4,

Kronecker’s delta, » the distance from the point of application of the load to the point under
consideration and #; the direction cosines (Fig.3).

The displacements at a point are given as following:
=Iude—IpudF+jbudQ 4.7
r r

Consequently, (4.7) takes the following form for the “/” component:

u,i =Iu,kpkdl“—jp,kukdF+Ibku,de (4.8)
T Q

r

By differentiating « at the internal points, one obtains the stress-tensor for an isotropic
medium:

7
o0 = 20 p A gl K P (4.9)
T N A T

1

Beyond the above, after carrying out the differentiation we have:

o Su,
:I|:12(2/ i +G(Ll’;ulk + l;lxjk J:lpk dI' +
] y 9, X . .

l

+f 26y y H gl 2 b, dQ - (4.10)
o 1-2v 7 9,
_J’ 2Gv Aij S e lgpzk

11-2v 7 S &,

Eq. (4.10) can be further written as follows:

b, dQ (4.11)

kij

o :IDki/pk dF—.[S,W.uk dF+ID
r r 2

in which the third order tensor components Dy; and S; are:

13
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1

Dy; = 8ﬂ(1—v)r2 [(1_2V)[Aki”,j +ALT, _Ay"’,k]"'?’”.i”.j”.k] (4.12)
G Sr
Siy = WFQ[O_ 2V)A T A V(AT + A ger) 5r,z”’,j”,k]
+3v(nr vy +nrr )+ (L=20)@nyrr +n Ay +nA ) — (- 4v)nkAU.J (4.13)

with: r. = —

1
’

Finally, because of egs (2.49) and (4.11) by considering the moving system S of Fig. 2, then
the stress-tensor reduces to the following form:

0

011 =01
0
O1p =)0y,
0
013 = )03
1 ,
Oy =—0yn
Oy =00 (4.14)
2 =0 :
0
O3 =03
1 ,
031 =03
)
O3 =03
0
O33 = Og3

0

where g

are given by. (4.11) to (4.13).

So, Table 1 shows the values of y as given by (2.41) for some arbitrary values of the velocity «
of the moving aerospace structure:

Table 1

Velocity u y =112/ Velocity u y =112/
50,000 km/h 1.000000001 0.800c 1.666666667
100,000 km/h 1.000000004 0.900c¢c 2.294157339
200,000 km/h 1.000000017 0.950¢c 3.202563076
500,000 km/h 1.000000107 0.990c 7.088812050
10E+06 km/h 1.000000429 0.999¢ 22.36627204
10E+07 km/h 1.000042870 0.9999¢ 70.71244596
10E+08 km/h 1.004314456 0.99999¢ 223.6073568
2x10E+8 km/h  1.017600788 0.999999¢ 707.1067812
c/3  1.060660172 0.9999999¢ 2236.067978
c/2  1.154700538 0.99999999¢ 7071.067812
2c/3  1.341640786 0.999999999¢ 22360.67978

3c/4  1.511857892 c o

From Table 1 follows that for small velocities 50,000 km/h to 200,000 km/h, the absolute and
the relative stress tensor are nearly the same. On the other hand, for bigger velocities like ¢/3, ¢/2
or 3c/4 (c = speed of light), the variable y takes values more than the unit and thus, relative stress

14



E.G. Ladopoulos

tensor is very different from the absolute one. In addition, for values of the velocity for the moving
structure near the speed of light, the variable y takes bigger values, while when the velocity is
equal to the speed of light, then y tends to the infinity.

Consequently, the Singular Integral Operators Method (S.I.O.M.) as was proposed by
E.G.Ladopoulos [4], [8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for
the numerical evaluation of the stress tensor (3.11), for every specific case.

5. Conclusions

By the current research in the area of aerospace and aeronautical technologies the theory of
“Universal Mechanics” has been investigated and applied for the design the future spacecraft
moving with very high speeds, even approaching the speed of light, as the plan of the International
Space Agencies is to achieve such spacecraft in the future. Such new generation spacecraft was
studied like a non-linear airframe. The future investigation concerns to the determination of the
proper composite materials or any other kind of materials for the construction of the next
generation spacecraft, as usual composite solids are not suitable for such constructions.

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of
Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable
difference between the absolute stress tensor of the airframe even for lower speeds. For bigger
speeds the difference between the two stress tensors is very much increased. “Universal
Mechanics” results as a combination of the theories of "Relativistic Elasticity” and "Relativistic
Thermo-Elasticity".

Consequently, for the structural design of the next generation spacecraft will be used the stress
tensor of the airframe in combination to the singular integral equations. Such a stress tensor is
reduced to the solution of a multidimensional singular integral equation and for its numerical
evaluation will be used the Singular Integral Operators Method (S.1.0.M.).
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