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Abstract 
A modern two-dimensional fluid mechanics representation analysis is further improved for the 
investigation of inviscid flowfields of unsteady airfoils. Consequently, the velocity and pressure 
coefficient field around a NACA airfoil is determined, while the above problem is reduced to the 
solution of a non-linear multidimensional singular integral equation, when the form of the source 
and vortex strength distribution is dependent on the history of the vorticity and source distribution 
on the NACA airfoil surface. Also, an application is given to the determination of the pressure 
coefficient and the velocity field around the blades of a vertical axis wind turbine, by assuming 
linear vortex distribution.  
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1. Introduction 
During the recent years, the non-linear singular integral equations developed an increasing 

interest, because of their application to the solution of general problems of fluid dynamics, 
referring to unsteady flows. Such fluid mechanics and aerodynamic problems, are reduced to the 
solution of a non-linear singular integral equation, connected with the design and evaluation of the 
aerodynamic characteristics of an airfoil section. 

Such aerodynamic characteristic of the NACA airfoils were always an important element in 
several engineering designs, like aircraft wings, turbomachinery vanes, helicopter rotors, propellers 
and prop fans. Beyond the above, the continuous improvement of wind turbine structures, for the 
minimization of the cost per unit produced electric energy, has concentrated the attention on 
aerodynamic applications in connection with wind energy methods. 

As a beginning A.M.O.Smith and J.L.Hess [1], were the first scientists who investigated 
aerodynamic panel methods for studying airfoils with zero lift, while they modeled the airfoil either 
with distributed potential source panels for nonlifting flows, or vortex panels for flow with lift. 
Their method was extended by R.H.Djojodihardjo and S.E.Widnall [2], P.E.Robert and G.R.Saaris 
[3], J.M.Summa [4], T.Sarpkaya and R.L.Schoaf [5], D.R.Bristow [6], D.R.Bristow and J.D.Hawk 
[7] and R.J.Lewis [8], for studying three-dimensional steady and unsteady flows, by combining 
source and vortex singularities.  

On the other hand, N.D.Ham [9], F.D.Deffenbaugh and F.J.Marschall [10], M.Kiya and M.Arie 
[11] and T.Sarpkaya and H.K.Kline [12] investigated some potential flow models, while the 
separating boundary layers were represented by some discrete vortices, emanating from a known 
separation point location on the airfoil surface. 

Additionally, several scientists made extensive calculations by using unsteady turbulent 
boundary layer methods during the last years, like R.E.Singleton and J.F.Nash [13], J.F.Nash, 
L.W.Carr and R.E.Singleton [14], A.A.Lyrio, J.H.Ferzinger and S.J.Kline [15], J.Kim, S.J.Kline 
and J.P.Johnston [16] and W.J.McCroskey and S.I.Pucci [16]. 
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Over the past years, E.G.Ladopoulos [18] - [21] proposed non-linear singular integral equation 
methods for the solution of fluid mechanics problems. Besides, during the last years, wind turbines 
have merited special attention because of their many important energy applications. Vertical axis 
wind turbines have a continuously increasing aspect, for the minimization of the cost per unit 
produced electric energy. R.J.Muraca, M.V.Stephens and J.R.Dagenhart [22], J.H.Strickland [23], 
P.N.Shankar [24] and R.E.Wilson, P.B.S.Lissaman and S.N.Walker [25] introduced a momentum 
model, consisting in the use of multiple streamtubes, for studying vertical axis wind turbines. 

On the contrary, J.Paraschivoiu [26] and J.Paraschivoiu et al. [27] improved the above model, 
by separating the flow into two different parts. Furthermore, J.L.Loth and H.McCoy [28] proposed 
an upwind and downwind momentum model for the optimization of vertical axis wind turbines. 

Apart from these, J.B.Fanucci and R.E.Walters [29] and J.H.Strickland, B.T.Webster and 
T.Nguyen [30], [31] introduced a vortex method for two- and three-dimensional flows for the 
investigation of vertical axis wind turbines. 

In the current paper by using  the field theory of Green, the problem of the unsteady flow of a 
two-dimensional NACA airfoil is reduced to the solution of a non-linear multidimensional singular 
integral equation. Such nonlinearity results because the source and vortex strength distribution are 
dependent on the history of the vorticity and source distribution on the NACA airfoil surface. 

Finally, an application is given to the determination of the velocity and pressure coefficient field 
presented in a vertical axis wind turbine by assuming linear vortex distribution. 

 

2.  Non-linear Unsteady Inviscid Flowfields  
A general non-linear unsteady fluid mechanics representation is studied, for the unsteady flow 

of a two-dimensional NACA airfoil. The method presented consists in the generalization of all past 
methods, by reducing the problem to the solution of a non-linear multidimensional singular integral 
equation. This nonlinearity results because of the general form given to the source and vortex 
strength distribution, while these are dependent on the history of the vorticity and source 
distribution on the NACA airfoil surface. [18] – [22] 

 
Hence, consider a two-dimensional airfoil moving in an  homogeneous  and  inviscid  fluid. 

(Fig.1). 

 
Fig. 1  A two-dimensional airfoil of surface  S  in an homogeneous, incompressible and inviscid fluid. 

 

The airfoil with the wake comprise s complete lifting system in an irrotational flow through the 
ideal fluid. Because of the existence of such an irrotationality, then for the local fluid velocity U 
one has:    
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                                          0 U                                                                (2.1) 

Besides, by replacing the fluid velocity with the total velocity potential  H  we have: 

                                                                        HU                                                                 (2.2) 

while (2.2) can be further written as:    

                                                                      h UU                                                           (2.3) 

with  the outward velocity (Fig. 1) and  h  the potential due to the presence of the airfoil. U
 

Because of the conservation of mass for an incompressible fluid, the vector field doesn’t 
diverge: 

                                                  0 U                                                                      (2.4) 

Hence, by using (2.2), (2.3) and (2.4) we obtain equation of Laplace which is the governing 
equation: 

                                                                                                                        (2.5) 02  h

Additionally, by using Green’s theorem [32] follows a basic relation for the velocity potential  
,  with  t  the time, at any point  x  in continuous, acyclic irrotational flow: ),( th x
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in which  S  is the surface of the airfoil  (Fig. 1),  W  the surface of the wake,    the surface 

normal at the source point  ξ  (Fig. 1),  
1n

 htg ,,ξ   the source strength distribution,   ht,,ξ    the 
vortex strength distribution and  r  the distance equal to:  

                                                ξx r                                                              (2.7) 

The velocity potential (2.4) can be also written as following, which is a two-dimensional non-
linear singular integral equation: 
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The kinematical surface tangency condition on the surface of the airfoil can be written as 
following: [33] 
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in which   denotes the surface normal at the field point  x  (Fig. 1). 2n
 

The above condition can be further written as following, for a body fixed coordinate system: 
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where  denotes the airfoil translation velocity and    the airfoil angular rotation. AU Aω
 

From eqs (2.9) and (2.10) follows: 
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Beyond the above, by inserting (2.11) into (2.8) results the following two-dimensional non-
linear singular integral equation: 
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The non-linear singular integral equation (2.12) can be further written as: 
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So, by solving the non-linear integral equation (2.13) with the corresponding boundary 
conditions, then the velocity at any field point will be determined through (2.9). 
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3.  New Aspects of Non-linear Airloads Analysis 
The pressure distribution on the airfoil may be obtained by the unsteady Bernoulli equation, 

valid at any point in an irrotational, ideal flow: 
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


  

221 H
t

H
PP


                                           (3.1) 

in which  ρ  denotes the fluid density. 
 

Besides, by using the derivation of the previous section, then (3.1) will be written as: 
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Furthermore, (3.2) reduces to the following form: 
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if we replace the ,  by the surface gradient f hS : 
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Hence, because of (2.9), then (3.3) can be written as: 
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which will be used for the computations. 
 

The basic object of the current research was to develop a general non-linear model for the 
determination of the velocity field around a NACA airfoil in two-dimensional unsteady flow. This 
problem was reduced to the solution of a two-dimensional non-linear singular integral equation, 
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while this form of nonlinearity was obtained because of the form of the general type of the source 
and vortex strength distribution. 
 
4.  Linear Vortex Distribution - Velocity and Pressure Coefficient Field  

Suppose the special case of a linear vortex distribution  δ.  In this case the general non-linear 
problem presented previously, will be much more simplified and will be solved as a linear problem. 
The geometrical representation of this problem is shown in Fig. 3. 

  
For a linear vortex distribution  δ,  then the fluid velocity  U  is given as following: 
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in which  are the unit vectors on the x  and  y  axes, respectively, and A  denotes the separating 
wake (Fig. 2).   

i  j,

 

 
 

Fig. 2 Coordinate system for the 2D airfoil 

 
Thus, when  and  , then the fluid velocity  U  will be computed by the following 

formulas: 
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where  a  is the angle of attack. 
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Additionally, we consider the pressure coefficient  : pC

                                                         )21()( 2
 UPPC p                                                      (4.3) 

in which  ρ  denotes the fluid density and  the stream pressure. P
 

Furthermore, by using the unsteady Bernoulli's equation, then the pressure coefficient will be 
simplified as following: 

                                                                        22
 UUC p                                                                   (4.4) 

which will be used for the computations. 
 
 

5.  Application  of  Vertical Axis Wind Turbine  
 
The previous mentioned theory of  2D  unsteady inviscid flowfields will be applied for the 

computation of the velocity and pressure coefficient field presented in a vertical axis wind turbine. 
Such types of wind turbines are of continuously increasing interest the last years, because of their 
big advantage to the minimization of the cost per unit produced electric energy. 
 

Two big advantages of the vertical axis wind turbines, are their efficiency which is continuously 
improved and their independence of their operation on the orientation of the wind. By the current 
application the vertical axis wind turbine considered, has the following geometrical sizes: head 
diameter:  ,  length:  ,  2  blades, blade chord:  mD 60.1 mH 10.1 mc 12.0   and blade airfoil 
section NACA 0018 (Fig. 3). 

 

 
 

Fig. 3 Vertical axis wind turbine 
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Furthermore, it was supposed linear vortex distribution and thus, the velocity field on the 
boundary and around of the airfoil was computed by (4.2) for azimuthal angle  . Hence, 
the pressure coefficients    were calculated by (4.4) for several wind velocities    and for 

angle of attack  . 

 90

UpC

 20a
 

Thus, Figs. 4 - 7 show the pressure distribution on the vertical axis wind turbine considered, for 
wind speed  smU 25,20,15,10 ,  respectively. 

 
 

 
 

Fig. 4 Pressure distribution on the vertical axis wind turbine of Fig. 3 for wind speed 10 m/sec. 

 
 

 
Fig. 5 Pressure distribution on the vertical axis wind turbine of Fig. 3 for wind speed 15 m/sec. 
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Fig. 6 Pressure distribution on the vertical axis wind turbine of Fig. 3 for wind speed 20 m/sec. 

 
 
 

 
 
 

Fig. 7 Pressure distribution on the vertical axis wind turbine of Fig. 3 for wind speed 25 m/sec. 
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From the above Figures, it can be seen that the values for both up and down points on the 
boundary of the airfoil, are continuously increasing when beginning from  x c  0   up to  x c  1. 

 
7. Conclusions 

A general non-linear model has been proposed and investigated for the determination of the 
velocity and pressure coefficient field around a NACA airfoil in two-dimensional inviscid and 
unsteady flow. Such a problem was reduced to the solution of a 2-D non-linear singular integral 
equation by applying the field theory of Green. 

Thus, in future non-linear singular integral equation methods will be of continuously interest, 
because these are very important for the determination of generalized solid mechanics and fluid 
mechanics problems. Consequently, modern problems of solid and fluid mechanics will be very 
much simplified, when solved by general non-linear singular integral equation methods. 

By the previous analysis, special attention was given to the investigation of the vertical axis 
wind turbines, which are of continuously increasing interest for the minimization of the cost per 
unit produced electric energy. The special application presented, was for the determination of the 
pressure coefficient field around the blades of a vertical axis wind turbine, by assuming linear 
vortex distribution. 
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