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Abstract

An innovative method of two-dimensional aerodynamics representation analysis is further
improved and investigated for the determination of inviscid flowfields of unsteady airfoils. Thus,
the above problem of the unsteady flow of a two-dimensional NACA airfoil is reduced to the
solution of a non-linear multidimensional singular integral equation, when the form of the source
and vortex strength distribution is dependent on the history of the above distribution on the NACA
airfoil surface. Moreover, an application is given to the determination of the velocity and pressure
coefficient field around an aircraft by assuming constant source distribution.
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1. Introduction

During the past years the non-linear singular integral equations have concentrated an increasing
interest, because of their application to the solution of basic problems of aerodynamics and fluid
mechanics, especially referring to unsteady flows. The theory and computational methods by non-
linear singular integral equations consist of the latest high technology to the solution of generalized
problems of solid and fluid mechanics. Thus, there is a big interest to the continuous improvement
of such computational methods.

The new design aerodynamic problems are reduced to the solution of a non-linear singular
integral equation, which is used for the determination of the velocity and pressure coefficient field
around a NACA airfoil. Such an aerodynamic behavior of the NACA airfoils is a very important
element to the design of new generation aircrafts, with very high speeds. Hence, special attention
should be given to the new technology computational methods concentrated to the solution of the
before mentioned aerodynamic and fluid dynamic problem.

A.M.0.Smith and J.L.Hess [1], were the first scientists who investigated aerodynamic panel
methods for studying airfoils with zero lift. According to them, the airfoil was modeled with
distributed potential source panels for nonlifting flows, or vortex panels for flow with lift. This
method was further extended by R.H.Djojodihardjo and S.E.Widnall [2], P.E.Robert and
G.R.Saaris [3], J.M.Summa [4], D.R.Bristow [5], D.R.Bristow and J.D.Hawk [6] and R.J.Lewis
[7], for studying three-dimensional steady and unsteady flows, by combining source and vortex
singularities. Besides, the unsteady panel methods to the modeling of separated wakes using
discrete vortices, were further extended by T.Sarpkaya and R.L.Schoaf [8].

In addition, N.D.Ham [9], F.D.Deffenbaugh and F.J.Marschall [10], M.Kiya and M.Arie [11]
and T.Sarpkaya and H.K.Kline [12] investigated some other flow models. According to them, the
separating boundary layers were represented by an array of discrete vortices, emanating from a
known separation point location on the airfoil surface.

On the other hand, during the past years, several scientists made extensive calculations by using
unsteady turbulent boundary layer methods. Among them we mention: R.E.Singleton and J.F.Nash
[13], J.F.Nash, L. W.Carr and R.E.Singleton [14], A.A.Lyrio, J.H.Ferzinger and S.J.Kline [15],
W.J.McCroskey and S.I.Pucci [16] and J.Kim, S.J.Kline and J.P.Johnston [17].
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Recently, non-linear singular integral equation methods were proposed by E.G.Ladopoulos [18]
- [24] for the solution of fluid mechanics and aerodynamic problems and by E.G.Ladopoulos and
V.A.Zisis [25], [26] for two-dimensional fluid mechanics problems applied to turbomachines.

Consequently, by the current research, the aerodynamic problem of the unsteady flow of a two-
dimensional NACA airfoil moving by a velocity U, , is reduced to the solution of a non-linear
multidimensional singular integral equation. This nonlinearity results because the source and vortex
strength distribution are dependent on the history of the vorticity and source distribution on the
NACA airfoil surface. Furthermore, a turbulent boundary layer model is further proposed, based on
the formulation of the unsteady behavior of the momentum integral equation.

An application is finally given to the determination of the velocity and pressure coefficient field
around an aircraft by assuming constant source distribution.

2. Non-linear Fluid Dynamics and Unsteady Aerodynamics

A modern non-linear unsteady fluid mechanics representation analysis is introduced and
studied, for the aerodynamic problem of a two-dimensional NACA airfoil. The proposed method
consists to the generalization of all past methods, by reducing the problem to the solution of a non-
linear multidimensional singular integral equation. The above nonlinearity results because of the
general form given to the source and vortex strength distribution, while these are dependent on the
history of the vorticity and source distribution on the NACA airfoil surface. In this case the airfoil

is moving with a speed U , . [18] — [24]

Hence, consider a two-dimensional airfoil moving in an homogeneous and inviscid fluid.
(Fig.1).
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Fig. 1 A two-dimensional airfoil of surface S in an homogeneous and inviscid fluid.

The airfoil with the wake comprise s complete lifting system in an irrotational flow through the
ideal fluid. Because of the existence of such an irrotationality, then for the local fluid velocity U we
have:

VxU=0 (2.1)

Furthermore, by replacing the fluid velocity with the total velocity potential H one has:

U=VH (2.2)
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while (2.2) can be further written as:
U=U_+Vh (2.3)

with U_ the outward velocity (Fig. 1) and h the potential due to the presence of the airfoil.

Additionally, by using Green’s theorem [27] follows a basic relation for the velocity potential
h(x,t), with t the time, at any point x in continuous, acyclic irrotational flow:

r

h(x,t) = —1/272'_[Md$ +1/27 J’ 5[g,t,h]0%(1jds (2.4)

S+w 1

where S is the surface of the airfoil (Fig. 1), W the surface of the wake, n, the surface normal
at the source point & (Fig. 1), g[&.z, 4] the source strength distribution, &[g,z,4] the vortex
strength distribution and r the distance equal to:

r=|x—§| (2.5)

The velocity potential (2.4) can be also written as following, which denotes a two-dimensional
non-linear singular integral equation:

h(x,t)=—1/2ﬂjMdS+1/z;z [ derhlyg (26)
r
N

S+w r

The kinematical surface tangency condition on the surface of the airfoil can be written as
following: [28]

M'Fﬁ-FU

s SED 2y,

‘n, =0 (2.7)
where n, denotes the surface normal at the field point x (Fig. 1).
The above condition can be further written as following, for a body fixed coordinate system:

(1/|VS(x,t) U,+o, x X)-n2 (2.8)

(X,
)2 =
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in which U, denotes the airfoil translation velocity and  , the airfoil angular rotation.
From egs (2.7) and (2.8) follows:

0%+(Uw—UA—mAxx)-n2=o (2.9)

2

Furthermore, by inserting (2.9) into (2.6) results the following two-dimensional non-linear
singular integral equation:

1/2n£g[§,t,h]§2(%de+l/2ﬂ | 5[§=fah]@i(%)dsz (2.10)

S+W 2
_(Uoo -U,-o, XX)'nz

The non-linear singular integral equation (2.10) can be further written as:

l/Zﬂ'[—g[g’zt’h]dS-l-l/ﬂ' | —5[€’§’h]dS= 211
s 7 r :

S+w

(U00 -U,-o, ><x)-n2
Thus, by solving the non-linear integral equation (2.11) with the corresponding boundary

conditions, then the velocity at any field point will be determined through (2.7).

3. Non-linear Pressure Distribution Analysis
The pressure distribution on the airfoil may be obtained by the unsteady Bernoulli equation,
valid at any point in an irrotational, ideal flow:

P=P — p[% + 1/2(VH)2} (3.1)

where p denotes the fluid density.

In addition, by using the derivation of the previous section, then (3.1) will be written as:

P=P, —p[%+(U® -U,-o, xx)-Vh+1/2(Vh)2} (3.2)

Beyond the above, (3.2) reduces to the following form:
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PZPOO_p[%+(Uoo—UA ~0,xx)-VH +

1 1

2 (3.3)
+§(Uw ~U,-o,xx)-n, +1/2(VH) +1/2(§j }

if we replace the V', by the surface gradient V/:

h
Vh=Vh+—¢ 3.4
N N m ( )

1

Hence, because of (2.9), then (3.3) can be written as:

cH
P=P,—p 2 4(U,-U, - "V H -
) pl:d +( 0 A (DAXX) S (35)

-1/2{(U, -U, -0, ,xx)-n,} +1/2(VSH)2]

which will be used for the computations.

4. Laminar and Turbulent Boundary Layer Models

Several boundary layer models can be used for the laminar, the turbulent parts of the flow and
the transition region between them, in order to determine the aerodynamic behavior of the airfoils.
These boundary layer models are the finite difference, finite element or integral models.

The turbulent boundary layer model which is proposed by the present research is based on the
formulation of the unsteady behavior of the momentum integral equation [15]. The major extension
of the above method by the present research is the inclusion of unsteady terms in the momentum
integral equation.

The unsteady momentum integral equation, which is valid for both laminar and turbulent flow
can be therefore written as: (Fig. 2)

d
! at (qu1)+a_2+LaM_B

C
= 2d, +8)=-L 4.1
u’ 8 S uy os 2T “.0)

where u , is the boundary layer edge velocity, t the time, d, the displacement thickness, d, the
momentum thickness, S the surface distance and cg the friction factor.
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Fig. 2 Laminar and Turbulent Boundary Layer Model for Aerodynamics.

Furthermore, consider the case for the laminar layer, then the pressure gradient parameter x is
given by the relation:

d ou 1 Ou
=R (2 +——F

4.2
Upg oS uy ot 4.2)

in which Ry is the Reynolds number basedon u, and d,.
In addition, by considering some special relations between the parameters cg/2, d, and d,,

then a solution for the laminar formulation may be obtained. For the wedge flow solutions
following relations are valid: [28]

¢y _191-4.13D
2 R,

N =(0.68-0.922D)" (4.3)
D =0.325 - 0.13kN?

where N is the shape parameter, D the blockage factor d, /d,; with d, the boundary layer
thickness and R , the Reynolds number based on u,and d.

On the other hand, for the turbulent layer model following formula is valid:

1 0
_g[ua(dB _dl)]_A (4-4)

B

and the function 4 is obtained by the formulas:
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dA
T = 00254, — A)d,

Ay = 424K 5 (£)*1
K, =0.013 +0.0038¢77'" (4.5)
_dndp
T, dx

where 7 is the wall shear stress and dp/dx the streamwise pressure gradient.

Besides, the shape factor relationships are obtained by following relations:

u o Yy 20
“ 1+§1n(dB) fcos (2dB)
_ b €N CR I
c= 0.41 (sgn 2 X 2 ) (4.6)
f=2B-¢)
C_F_ Tw
2 ,01/132

with u the velocity in the boundary layer at a distance y from the wall and p the fluid density.

Finally, the skin friction law is valid as:

—-0.268

R
%F =0.0511-25]"" (;"j sgn(l—2B) (4.7)

Additional details concerning the entrainment, the wall shear stress and the skink friction relations
can be found in [15].

5. Velocity and Pressure Coefficient Field for Constant Source Distribution (Airfoil with
Velocity)

Consider the special case of a constant source distribution g. In this case the general non-linear
problem presented in previous paragraphs, is much more simplified and is solved as a linear
problem. The geometrical representation of the problem is shown in Fig. 3.

For constant source distribution g, then the fluid velocity U, is determined by the formula:
gdr ..
U = J.—(cosw+s1n(oj) (5.2)

4 2
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where i, j are the unit vectors on the x and y axes, respectively, and A denotes the separating
wake (Fig. 3).
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Fig. 3 Coordinate system for the 2D airfoil of an aircraft.

Hence, when y, =0 and y, =0, then the fluid velocity U will be computed by the following
formulas:

7. .
g/27r|:]nr—ll—((pl _(/’2).]} vy, #0
U = 2 (5.2)
g/27n LS i, y,=0
r
Beyond the above, consider the pressure coefficient C,:
2
C,=P-P)/12pU, -U,)] (5.3)

where p denotes the fluid density and P, the stream pressure.

By using further the unsteady equation of Bernoulli, then the pressure coefficient will be
simplified through the relation:

C,=-U%/U,-U,)’ (5.4)

which will be used for the computations.
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6. Unsteady Aerodynamics to New Generation Aircraft

As an application of the previous mentioned two-dimensional unsteady aerodynamics theory,
we will calculate the velocity field presented around an aircraft. The construction of new
generation turbojet engines makes possible the design of very fast big jets. Beyond the above, the
increasing evolution of aeroelasticity in aircraft turbomachines continues to be still improved,
according to the needs of aircraft powerplant and turbine designers. Thus, the Aeronautical
Industries should achieve a competitive technological advantage in several strategic areas of new
and fast developing advanced technologies, by which a bigger market share can be achieved, in the
medium and longer terms. Such an increasing big market share includes the design of new
generation large aircrafts with very high speeds.

By the current application the length of the aircraft under consideration is ¢=50.0m and the
airfoil section NACA 0021 (Fig. 3).

It was supposed unit vortex distribution and hence, the velocity field on the boundary and
around of the airfoil was computed by (5.2). Additionally, the pressure coefficients C, were

calculated through (5.4) for several aircraft velocities U , and wind velocity U , = 15m/sec.
Figures 4,5, 6 and 7 show the pressure distribution on the turbojet presented, for aircraft speeds

U, =1234 Mach respectively (1 Mach=332 m/sec). Besides, Figs. 4a to 7a show the same
pressure distribution on the airfoil, in three dimensional form.
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Fig. 4 Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 1 Mach.
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Fig. 4a Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 1 Mach —
3D form.

# Up Boundary Points
M Down Boundary Points
Dut Paints.

Cp(x1047)

Fig. 5 Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 2 Mach.
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Fig. 5a :Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 2 Mach
— 3D form.
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Fig. 6 Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 3 Mach.
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Fig. 6a Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 3 Mach —
3D form.
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Fig. 7 Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 4 Mach.
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Fig. 7a Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 4 Mach —
3D form.

As it is shown in the above Figures, for the up boundary points of the NACA airfoil the values
of the pressure coefficient are increasing approximately up to x/c = 0.25, while they decreasing
again up to x/c =1. On the other hand, for the down boundary points the values of C, are

decreasing up to x/c = 0.35, and then increasing up to x/c = 1.

7. Conclusions

A general non-linear model has been further studied for the determination of the velocity and
pressure coefficient field around a NACA airfoil moving by a velocity U, in two-dimensional
unsteady flow. Such a problem was reduced to the solution of a two-dimensional non-linear
singular integral equation, which has to be solved by computational methods. The nonlinearity
resulted because of the form of the general type of the source and vortex strength distribution.

Additionally, a boundary layer model was proposed based on the formulation of the unsteady
behavior of the momentum integral equation. Such a boundary layer model is valid for both
laminar and turbulent flow, and was proposed as a general method for the study of the aerodynamic
behavior of the airfoils.

On the contrary, by supposing constant source distribution, then the velocity and pressure
coefficient field around an aircraft moving with several velocities, was determined. This method
should be applied for the design of new generation large aircrafts with very high speeds.

Hence, the non-linear singular integral equation methods, will be in future of continuously
increasing interest, as such methods will be very important for the solution of the generalized solid
and fluid mechanics problems. Special attention should be therefore given to the amelioration of
the non-linear singular integral equation methods, as many modern solid and fluid mechanics
problems with considerable complicated forms, are recently reduced to non-linear forms.
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