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Abstract 

An innovative method of two-dimensional aerodynamics representation analysis is further 

improved and investigated for the determination of inviscid flowfields of unsteady airfoils. Thus, 

the above problem of the unsteady flow of a two-dimensional NACA airfoil is reduced to the 

solution of a non-linear multidimensional singular integral equation, when the form of the source 

and vortex strength distribution is dependent on the history of the above distribution on the NACA 

airfoil surface. Moreover, an application is given to the determination of the velocity and pressure 

coefficient field around an aircraft by assuming constant source distribution.  
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1. Introduction 

During the past years the non-linear singular integral equations have concentrated an increasing 

interest, because of their application to the solution of basic problems of aerodynamics and fluid 

mechanics, especially referring to unsteady flows. The theory and computational methods by non-

linear singular integral equations consist of the latest high technology to the solution of generalized 

problems of solid and fluid mechanics. Thus, there is a big interest to the continuous improvement 

of such computational methods. 

The new design aerodynamic problems are reduced to the solution of a non-linear singular 

integral equation, which is used for the determination of the velocity and pressure coefficient field 

around a NACA airfoil. Such an aerodynamic behavior of the NACA airfoils is a very important 

element to the design of new generation aircrafts, with very high speeds. Hence, special attention 

should be given to the new technology computational methods concentrated to the solution of the 

before mentioned aerodynamic and fluid dynamic problem. 

A.M.O.Smith and J.L.Hess [1], were the first scientists who investigated aerodynamic panel 

methods for studying airfoils with zero lift. According to them, the airfoil was modeled with 

distributed potential source panels for nonlifting flows, or vortex panels for flow with lift. This 

method was further extended by R.H.Djojodihardjo and S.E.Widnall [2], P.E.Robert and 

G.R.Saaris [3], J.M.Summa [4], D.R.Bristow [5], D.R.Bristow and J.D.Hawk [6] and R.J.Lewis 

[7], for studying three-dimensional steady and unsteady flows, by combining source and vortex 

singularities. Besides, the unsteady panel methods to the modeling of separated wakes using 

discrete vortices, were further extended by T.Sarpkaya and R.L.Schoaf [8]. 

In addition, N.D.Ham [9], F.D.Deffenbaugh and F.J.Marschall [10], M.Kiya and M.Arie [11] 

and T.Sarpkaya and H.K.Kline [12] investigated some other flow models. According to them, the 

separating boundary layers were represented by an array of discrete vortices, emanating from a 

known separation point location on the airfoil surface. 

On the other hand, during the past years, several scientists made extensive calculations by using 

unsteady turbulent boundary layer methods. Among them we mention: R.E.Singleton and J.F.Nash 

[13], J.F.Nash, L.W.Carr and R.E.Singleton [14], A.A.Lyrio, J.H.Ferzinger and S.J.Kline [15], 

W.J.McCroskey and S.I.Pucci [16] and J.Kim, S.J.Kline and J.P.Johnston [17]. 
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Recently, non-linear singular integral equation methods were proposed by E.G.Ladopoulos [18] 

- [24] for the solution of fluid mechanics and aerodynamic problems and by E.G.Ladopoulos and 

V.A.Zisis [25], [26] for two-dimensional fluid mechanics problems applied to turbomachines. 

Consequently, by the current research, the aerodynamic problem of the unsteady flow of a two-

dimensional NACA airfoil moving by a velocity UA , is reduced to the solution of a non-linear 

multidimensional singular integral equation. This nonlinearity results because the source and vortex 

strength distribution are dependent on the history of the vorticity and source distribution on the 

NACA airfoil surface. Furthermore, a turbulent boundary layer model is further proposed, based on 

the formulation of the unsteady behavior of the momentum integral equation.  

An application is finally given to the determination of the velocity and pressure coefficient field 

around an aircraft by assuming constant source distribution.       

 

2. Non-linear Fluid Dynamics and Unsteady Aerodynamics  

A modern non-linear unsteady fluid mechanics representation analysis is introduced and 

studied, for the aerodynamic problem of a two-dimensional NACA airfoil. The proposed method 

consists to the generalization of all past methods, by reducing the problem to the solution of a non-

linear multidimensional singular integral equation. The above nonlinearity results because of the 

general form given to the source and vortex strength distribution, while these are dependent on the 

history of the vorticity and source distribution on the NACA airfoil surface. In this case the airfoil 

is moving with a speed AU . [18] – [24] 

 

Hence, consider a two-dimensional airfoil moving in an  homogeneous  and  inviscid  fluid. 

(Fig.1). 

 

 
Fig. 1 A two-dimensional airfoil of surface  S  in an homogeneous and inviscid fluid. 

 

The airfoil with the wake comprise s complete lifting system in an irrotational flow through the 

ideal fluid. Because of the existence of such an irrotationality, then for the local fluid velocity U we 

have:    

                                          0 U                                                              (2.1) 

Furthermore, by replacing the fluid velocity with the total velocity potential  H  one has: 

                                                                        HU                                                               (2.2) 
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while (2.2) can be further written as:    

                                                                      h UU                                                           (2.3) 

with U  the outward velocity (Fig. 1) and  h  the potential due to the presence of the airfoil. 

 

Additionally, by using Green’s theorem [27] follows a basic relation for the velocity potential  

),( th x ,  with  t  the time, at any point  x  in continuous, acyclic irrotational flow: 
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where  S  is the surface of the airfoil  (Fig. 1),  W  the surface of the wake,  1n   the surface normal 

at the source point  ξ  (Fig. 1),   htg ,,ξ   the source strength distribution,   ht,,ξ   the vortex 

strength distribution and  r  the distance equal to:  

                                           ξx r                                                                (2.5) 

The velocity potential (2.4) can be also written as following, which denotes a two-dimensional 

non-linear singular integral equation: 
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The kinematical surface tangency condition on the surface of the airfoil can be written as 

following: [28] 
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where  2n  denotes the surface normal at the field point  x  (Fig. 1). 

 

The above condition can be further written as following, for a body fixed coordinate system: 
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in which AU  denotes the airfoil translation velocity and  Aω   the airfoil angular rotation. 

 

From eqs (2.7) and (2.8) follows: 
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Furthermore, by inserting (2.9) into (2.6) results the following two-dimensional non-linear 

singular integral equation: 
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The non-linear singular integral equation (2.10) can be further written as: 
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Thus, by solving the non-linear integral equation (2.11) with the corresponding boundary 

conditions, then the velocity at any field point will be determined through (2.7). 

 

3.  Non-linear Pressure Distribution Analysis 

The pressure distribution on the airfoil may be obtained by the unsteady Bernoulli equation, 

valid at any point in an irrotational, ideal flow: 

                                                      







 

2
21 H

t

H
PP




                                           (3.1) 

where  ρ  denotes the fluid density. 

 

In addition, by using the derivation of the previous section, then (3.1) will be written as: 
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Beyond the above, (3.2) reduces to the following form: 
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if we replace the f ,  by the surface gradient hS : 
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Hence, because of (2.9), then (3.3) can be written as: 
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which will be used for the computations. 

 

4. Laminar and Turbulent Boundary Layer Models 

Several boundary layer models can be used for the laminar, the turbulent parts of the flow and 

the transition region between them, in order to determine the aerodynamic behavior of the airfoils. 

These boundary layer models are the finite difference, finite element or integral models.  

 

The turbulent boundary layer model which is proposed by the present research is based on the 

formulation of the unsteady behavior of the momentum integral equation [15]. The major extension 

of the above method by the present research is the inclusion of unsteady terms in the momentum 

integral equation. 

    

The unsteady momentum integral equation, which is valid for both laminar and turbulent flow 

can be therefore written as: (Fig. 2) 
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where  u B  is the boundary layer edge velocity, t the time, 1d  the displacement thickness,  2d   the 

momentum thickness, S  the surface distance and  cF  the friction factor. 
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Fig. 2 Laminar and Turbulent Boundary Layer Model for Aerodynamics. 

 

Furthermore, consider the case for the laminar layer, then the pressure gradient parameter μ  is 

given by the relation: 
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in which  Rd  is the Reynolds number based on   u B  and   2d .  

 

In addition, by considering some special relations between the parameters  cF /2, 2d  and 1d , 

then a solution for the laminar formulation may be obtained. For the wedge flow solutions 

following relations are valid: [28] 
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where  N  is the shape parameter, D  the blockage factor  1d  / Bd  with Bd   the boundary layer 

thickness and  R d  the Reynolds number based on  u d and  d. 

   

On the other hand, for the turbulent layer model following formula is valid: 
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and the function  Λ  is obtained by the formulas: 
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where  τ w  is the wall shear stress and  dp/dx the streamwise pressure gradient. 

 

Besides, the shape factor relationships are obtained by following relations: 
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with  u  the velocity in the boundary layer at a distance  y from the wall and  ρ  the fluid density.     

 

Finally, the skin friction law is valid as: 
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Additional details concerning the entrainment, the wall shear stress and the skink friction relations 

can be found in [15]. 

 

5.  Velocity and Pressure Coefficient Field for Constant Source Distribution (Airfoil with 

Velocity) 

 Consider the special case of a constant source distribution  g. In this case the general non-linear 

problem presented in previous paragraphs, is much more simplified and is solved as a linear 

problem. The geometrical representation of the problem is shown in Fig. 3.  

 

For constant source distribution g, then the fluid  velocity  U,  is determined by the formula: 
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where i  j,  are the unit vectors on the x  and  y  axes, respectively, and A  denotes the separating 

wake (Fig. 3).   

 

 
 

Fig. 3 Coordinate system for the 2D airfoil of an aircraft. 

 

Hence, when 0py  and  0py , then the fluid velocity  U  will be computed by the following 

formulas: 
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Beyond the above, consider the pressure coefficient  pC : 

                                                        ])(21[)(
2

Ap UUPPC                                          (5.3) 

where  ρ  denotes the fluid density and P  the stream pressure. 

 

By using further the unsteady equation of Bernoulli, then the pressure coefficient will be 

simplified through the relation: 

                                                                 22 )( Ap UUUC                                                 (5.4) 

which will be used for the computations. 
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6. Unsteady Aerodynamics to New Generation Aircraft  

 

As an application of the previous mentioned two-dimensional unsteady aerodynamics theory, 

we will calculate the velocity field presented around an aircraft. The construction of new 

generation turbojet engines makes possible the design of very fast big jets. Beyond the above, the 

increasing evolution of aeroelasticity in aircraft turbomachines continues to be still improved, 

according to the needs of aircraft powerplant and turbine designers. Thus, the Aeronautical 

Industries should achieve a competitive technological advantage in several strategic areas of new 

and fast developing advanced technologies, by which a bigger market share can be achieved, in the 

medium and longer terms. Such an increasing big market share includes the design of new 

generation large aircrafts with very high speeds. 

  

By the current application the length of the aircraft under consideration is c=50.0m and the 

airfoil section NACA 0021 (Fig. 3). 

 

It was supposed unit vortex distribution and hence, the velocity field on the boundary and 

around of the airfoil was computed by (5.2). Additionally, the pressure coefficients  Cp  were 

calculated through (5.4) for several aircraft velocities  AU  and wind velocity U  = 15m/sec. 

 

Figures 4, 5, 6 and 7  show the pressure distribution on the turbojet presented, for aircraft speeds  

AU 1,2,3,4 Mach  respectively (1 Mach=332 m/sec). Besides, Figs. 4a to 7a show the same 

pressure distribution on the airfoil, in three dimensional form. 

 

 

 
 

Fig. 4 Pressure distribution around the aircraft of Fig.3, for constant source distribution and speed 1 Mach. 

 

 

 

 

 

 

 



E.G. Ladopoulos 
 

 20 

 

 

 
 
Fig. 4a Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 1 Mach – 

3D form. 

 

 

 

 
 

 
Fig. 5 Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 2 Mach. 

 

 

 

 



E.G. Ladopoulos 
 

 21 

 

 

 
Fig. 5a :Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 2 Mach 

– 3D form. 

 

 

 

 

 
 

Fig. 6 Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 3 Mach. 
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Fig. 6a Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 3 Mach – 

3D form. 

 

 

 

 
 

Fig. 7 Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 4 Mach. 
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Fig. 7a Pressure distribution around the aircraft  of Fig.3, for constant source distribution and speed 4 Mach – 

3D form. 

 

 

As it is shown in the above Figures, for the up boundary points of the NACA airfoil the values 

of the pressure coefficient are increasing approximately up to x/c = 0.25, while they decreasing 

again up to x/c =1. On the other hand, for the down boundary points the values of Cp  are 

decreasing up to x/c = 0.35, and then increasing up to x/c = 1. 

 

7. Conclusions 

A general non-linear model has been further studied for the determination of the velocity and 

pressure coefficient field around a NACA airfoil moving by a velocity UA in two-dimensional 

unsteady flow. Such a problem was reduced to the solution of a two-dimensional non-linear  

singular integral equation, which has to be solved by computational methods. The nonlinearity 

resulted because of the form of the general type of the source and vortex strength distribution. 

Additionally, a boundary layer model was proposed based on the formulation of the unsteady 

behavior of the momentum integral equation. Such a boundary layer model is valid for both 

laminar and turbulent flow, and was proposed as a general method for the study of the aerodynamic 

behavior of the airfoils. 

On the contrary, by supposing constant source distribution, then the velocity and pressure 

coefficient field around an aircraft moving with several velocities, was determined. This method 

should be applied for the design of new generation large aircrafts with very high speeds. 

Hence, the non-linear singular integral equation methods, will be in future of continuously 

increasing interest, as such methods will be very important for the solution of the generalized solid 

and fluid mechanics problems. Special attention should be therefore given to the amelioration of 

the non-linear singular integral equation methods, as many modern solid and fluid mechanics 

problems with considerable complicated forms, are recently reduced to non-linear forms. 
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