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Abstract 

"Non-linear Real-Time Expert Seismology" is further improved by using a non-linear 3-D elastic 

waves real - time expert system, for the exploration of the on-shore and off-shore petroleum 

reserves worldwide. The above leading petroleum exploration technology is working by using 

elastic (seismic) waves moving in an unbounded subsurface medium, for searching the land and 

marine petroleum reservoir developed on the continental crust and in deeper water ranging from 

300 to 3000 m, or even deeper. This  high technology can be used at any depth of seas and oceans 

all over the world and for any depth in the subsurface of existing petroleum reserves. By the 

present research 4-D multiphase flows are proposed, which incorporates many 3-D multiphase 

flows over the same reservoir at specified intervals of time. Thus, by studying multiple time-lapsed 

3-D surveys, or three-dimensional subsurface flows, portrays the changes in the reservoir over 

time. Also, several mechanical properties of rock regulating the wave propagation phenomenon 

appear as spatially varying coefficients in a system of time-dependent hyperbolic partial differential 

equations. The wave equation describes the propagation of the seismic waves through the earth 

subsurface and this equation is finally reduced to a Helmholz differential equation. Consequently, 

the Helmholtz differential equation is numerically solved by using the Singular Integral Operators 

Method (S.I.O.M.). Additionally, several properties are analyzed and investigated for the wave 

equation. An application is further given for the determination of the seismic field radiated from a 

pulsating sphere into an infinite homogeneous medium.  
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1. 4-D Non-linear Real-Time Expert Seismology  

The innovative technology "Non-linear Real-Time Expert Seismology" is the main and best tool 

which can be used by the petroleum industry to map petroleum deposits in the Earth‟s upper crust. 

Consequently, the new petroleum exploration method of "Non-linear Real-Time Expert 

Seismology" was introduced and investigated by E.G.Ladopoulos [25] - [30], as an extension on his 

methods on non-linear singular integral equations in potential flows, fluid mechanics, structural 

analysis, solid mechanics, hydraulics and aerodynamics [15] - [24].  

Besides, seismic wave propagation, the physical phenomenon underlying the "Non-linear Real-

Time Expert Seismology" as well as other types of seismology, is modeled with reasonable 

accuracy as small-amplitude displacement of a continuum, using various specializations and 

generalizations of linear elastodynamics. In the above models, there are several mechanical 

properties of rock regulating the wave propagation phenomenon appear as spatially varying 

coefficients in a system of time-dependent hyperbolic partial differential equations.  

In general, the "Non-linear Real-Time Expert Seismology" seeks to extract maps of the Earth‟s 

sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or 

other controlled sound sources positioned near the surface. Hence, reasonably accurate models of 

seismic energy propagation take the form of hyperbolic systems of partial differential equations, in 

which the coefficients represent the spatial distribution of various mechanical characteristics of 
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rock, like density, stiffness, etc. So, the exploration geophysics community has developed various 

methods for estimating Earth structure from seismic data, however the very modern and 

groundbreaking method "Non-linear Real-Time Expert Seismology" seems to be the best tool for 

on-shore and off-shore petroleum reserves exploration for very deep drillings ranging up to 20,000 

or 30,000 m.  

In addition, 4-D seismic can help to locate untapped pockets of oil or gas within the reservoir. 

Typically, 4-D seismic data is processed by subtracting the data from one survey from the data of 

another. The amount of change in the reservoir is defined by the difference between the two. If no 

change has occurred over the time period, the result will be zero. 

During the past years several variants of integral equations methods were used for the solution 

of elastodynamics and acoustic problems. Already at the end of sixty's H.A. Shenk [1] stated that 

the integral equation for potential mathematically failed to yield unique solutions to the exterior 

acoustic problem and proposed a method in which an over determined system of equations at some 

characteristic frequencies was formed by combining the surface Helmholtz equation with the 

corresponding interior Helmholtz equation. Hence, it was analytically proved, that the system of 

equations provide a unique solution at the same characteristic frequencies, to some extent. 

However, the above method might fail to produce unique solutions, when the interior points used in 

the collocation of the Boundary Integral Equations were located on a nodal surface of an interior 

standing wave. 

Furthermore, at the start of seventy's A.J. Burton and G.F. Miller [2] proposed a combination of 

the surface Helmholtz integral equation for potential and the integral equation for the normal 

derivative of potential at the surface, to circumvent the problem of nonuniqueness at characteristic 

frequencies. Their method was called Composite Helmholtz Integral Equation. Several years later, 

W.L. Meyer, W.A. Bell, B.T. Zinn and M.P. Stallybrass [3] and T. Terai [4], developed 

regularization techniques for planar elements for the calculation of sound fields around three 

dimensional objects by integral equation methods.  

On the contrary, Z. Reut [5], investigated further the Composite Helmhholtz Integral Equation 

Method by introducing the hypersingular integrals. Besides, in the above numerical method, the 

accuracy of the integrations affects the results and the conventional Gauss quadrature can not be 

used directly.  

The basic idea by using the gradients of the fundamental solution to the Helmholtz differential 

equation for velocity potential, as vector test functions to write the weak form of the original 

Helmholtz differential equation for potential and so directly to derive a non hypersingular boundary 

integral equations for velocity potential gradients, was proposed and investigated by H. Okada, H. 

Rajiyah and S.N. Atluri [6] and H. Okada and S.N. Atluri [9]. The above scientists used the 

displacement and velocity gradients to directly establish the numerically tractable displacement and 

displacement gradient boundary integral equations in elasto-plastic solid problems and traction 

boundary integral equations. Moreover, C.C. Chien, H. Rajiyah and S.N. Atluri [7], employed 

some known identities of the fundamental solution from the associated interior Laplace problem, to 

regularize the hypersingular integrals.   

In addition, T.W. Wu, A.F. Seybert and G.C. Wan [8], proposed the regularized normal 

derivative equation, to be converged in the Cauchy principal value sense. The computation of 

tangential derivatives was required everywhere on the boundary. Besides, W.S. Hwang [10], 

reduced the singularity of the Helmholtz integral equation by using some identities from the 

associated Laplace equation. On the other hand, the value of the equipotential inside the domain 

must be computed, because the source distribution for the equipotential surface from the potential 

theory was used to regularize the weak singularities. 

S.A. Yang [11] used further the identities of the fundamental solution of the Laplace problem to 

efficiently solve the problem of acoustic scattering from a rigid body. Also, Z.Y. Yan, K.C. Hung 

and H. Zheng [12], in order to solve the intensive computation of double surface integral, employed 

the concept of a discretized operator matrix to replace the evaluation of double surface integral 

with the evaluation of two discretized operator matrices.  

On the other hand, Z.D. Han and S.N. Atluri [13] used traction boundary integral equations for 

the solution of the Helmholtz equation. Besides, recently was used by S.N. Atluri, Z.D. Han and S. 
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Shen [14] the meshless method, as an alternative numerical method, to eliminate the drawbacks in 

the Finite Element Method and the Boundary Element Method.     

By the present research, the Singular Integral Operators Method (S.I.O.M.) [15]-[26] will be 

used for the solution of elastodynamic problems by using the Helmholtz differential equation. In 

such a derivation will be used the gradients of the fundamental solution to the Helmholtz 

differential equation for the velocity potential. Besides, several basic identities governing the 

fundamental solution to the Helmholtz differential equation for the velocity potential are analyzed 

and investigated. 

Thus, by using the Singular Integral Operators Method (S.I.O.M.), then the acoustic velocity 

potential will be computed. Besides, some properties of the wave equation, which is a Helmholtz 

differential equation, are proposed and investigated. Some basic properties of the fundamental 

solution will be further derived. 

An application is finally given for the determination of the seismic field radiated from a 

pulsating sphere into an infinite homogeneous medium. Hence, by using the Singular Integral 

Operators Method (SIOM), then the acoustic pressure radiated from the above pulsating sphere will 

be computed. This is very important in petroleum reservoir engineering in order the size of the 

reservoir to be evaluated. 

Consequently, the S.I.O.M. which was used very successfully for the solution of several 

engineering problems of fluid mechanics, hydraulics, aerodynamics, solid mechanics, potential 

flows and structural analysis, are further extended in the present investigation for the solution of 

petroleum reservoir engineering problems in elastodynamics.  

 

2. 4-D Non-linear Seismic Wave Motion for Elastodynamics  

In general, seismic wavelengths run in the tens of meters, so it is reasonable to presume that the 

mechanical properties of rocks responsible for seismic wave motion might be locally homogeneous 

on length scales of millimeters or less, which means that the Earth can be modeled as a mechanical 

continuum. Thus, except possible for a few meters around the source location, the wavefield 

produced in seismic reflection experiments does not appear to result in extended damage or 

deformation, so the waves are entirely transient. These considerations suggest a non-linear wave 

motion as a mechanical model in elastodynamics.  

    

In an homogeneous medium the equations of elastodynamics are given by the following 

formulas: 

                                                                       b
t

v





σ                                                      (2.1)  

  

                                                                 






)(

2

1 TvvC
t

                                             (2.2) 

 

in which  v  denotes the particle velocity field, σ the stress tensor, b a body force density, γ a defect 

in the elastic constitutive law, ρ  the mass density, t the time and C the Hooke's tensor. 

 

Moreover, the right hand sides b and γ  provide a variety of representations for external energy 

input to the system. 

 

Thus, the new method for on-shore and off-shore petroleum reserves exploration "Non-linear 

Real-Time Expert Seismology" uses transient energy sources and produce transient wave fields. So, 

the appropriate initial conditions for the system of eqs (2.1) and (2.2)  are as following: 

 

                                                              v = 0,  σ = 0,       for: t << 0                                             (2.3) 
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The Hooke's tensor, for isotropic elasticity, has only two independent parameters, the 

compressional and shear wave speeds pc  and sc . It is instructive to examine direct measurements 

of these quantities, made in a borehole. So, there are two types of elastic waves produced: I) P-

waves, which are primary or “compressional” waves, and  II) S-waves, or shear waves. 

 

By the present research, the seismic problem will not be developed in the generalized context of 

the elastodynamic system (2.1) and (2.2). Instead, our research will be limited to a special case of 

seismology. Hence, by the present model, it is supposed that the material does not support shear 

stress. Then the stress tensor becomes scalar, σ = −pI, p being the pressure, and only one 

significant component, the bulk modulus κ, is left in the Hooke tensor.  

  

Thus, the system (2.1) and (2.2) reduces to: 
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where the energy source is represented as a constitutive law defect  h. 

 

 

On the other hand, the proposed model predicts wave motion c with spatially varying wave 

speed: 

 

                                                                             



c                                                              (2.6) 

 

in which  ρ is the mass density and  κ  the bulk modulus. 

    

Moreover, it is very convenient to represent the elastodynamics in terms of the acoustic velocity 

potential :  




t

dssxptxu ),(),( ,  with the following results: 
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By using (2.6) and (2.7), then the acoustic system (2.4) and (2.5) reduces to the wave equation, 

because of the propagation of seismic waves through an unbounded homegeneous solid: 

 

                                                             hu
t

u

c








11
2

2

2
                                                 (2.8) 

 

Additionally, by assuming that density ρ to be constant and that the source (transient 

constitutive law defect h) is an isotropic point radiator located at the source point, then the wave 

equation (2.8) reduces to the following Helmholtz differential equation: 
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Also, for time harmonic waves with a time factor tie  , then the wave equation (2.9) reduces to: 

 

                                                                      022  uku                                                      (2.10) 

 

where the wave number k is equal to: 

 

                                                                            
c

k


                                                             (2.11) 

 

with  ω  the angular frequency and  c  the speed of sound in the medium at the equilibrium state.       

                    

The fundamental solution of the wave equation (2.1) at any field point  y due to a point sound 

source  x, for the two dimensions is valid as following: 
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in which 1i , )(
)1(

0 krH  denotes the Hankel function of the first kind and r is the distance 

between the field point  y and the source point x  ( yx r ). 

    

Furthermore, the fundamental solution of the wave equation (2.1) for the three dimensions is 

equal to: 
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The fundamental solution ),(* yxu  is further governed by the wave equation: 

 

                                                    0),(),(),( *2*2  yxyxyx uku                                      (2.16)   

    

Thus, eqn (2.16) is referred as the Helmholtz potential equation governing the fundamental 

solution.  

 

Moreover, consider the weak form of the Helmholtz equation to be given by the relation: 
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in the solution domain Ω. 

Then, by applying the divergence theorem once in (2.17), one obtains a symmetric weak form: 
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in which  n  denotes the outward normal vector of the surface  S. 

 

So, in the symmetric weak form the function  u and the fundamental solution u
*
 are only 

required to be first - order differentiable. Also, by applying the divergence theorem twice in (2.17) 

then we obtain:  
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Thus, (2.19) is the asymmetric weak form and the fundamental solution  u
*  

is required to be 

second - order differentiable. Besides, u is not required to be differentiable in the domain Ω.   

 

By combining further eqs (2.16) and (2.19), then we have: 
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which can be further written as: 

 

                                              dSRudSuqu 





),()(),()()( **
yxyyxyx                            (2.21) 

 

where q(y) denotes the potential gradient along the outward normal direction of the boundary 

surface: 
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and the kernel function: 
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By differentiating (2.21) with respect to xk , we obtain the integral equation for potential 

gradients  u,k(x) by the following relation: 
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3. Basic Properties for the Fundamental Solution  
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The weak form of (2.6) governing the fundamental solution, takes the following form: 

                                               

                                      


xyxyx ,0),(),( *2*2 ccduku                           (3.1) 

 

in which c denotes a constant, considering as the test function. 

 

Additionally, (3.1) can be written as: 
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Hence, (3.2) takes the following form: 
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Moreover, by considering an arbitrary function u(x) in Ω as the test function, then the weak 

form of (2.6) can be written as: 
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and further as: 
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Finally, (3.5) takes the form: 
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On the other hand, if x approaches the smooth boundary )( x , then the first term in (3.6) 

will be written as: 
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in the sense of a Cauchy Principal Value (CPV) integral. 

 

For the understanding of the physical meaning of (3.7), then eqs (3.3) and (3.6) may be written 

as following:  
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Thus, from (3.8) follows that only a half of the source function at point x is applied to the 

domain Ω,  when the point x approaches a smooth boundary, x . 

 

Consider further another weak form of eqn (3.6) by supposing the vector functions to be the 

gradients of an arbitrary function u(y) in Ω, chosen in such a way that they have constant values: 
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Consequently, the weak form of eqn (3.6) takes the following form:   
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By applying further the divergence theorem, then eqn (3.11) may be written as:      
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Moreover, the following property exists: 
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By adding eqs (3.12) and (3.13) then we have: 
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4. Singular Integral Operators Method (SIOM)   

By the present research the regularization of the Singular Integral Operators Method will be 

considered together with the possibility of satisfying the SIOM in a weak form at  , through a 

generalized Petrov - Galerkin formula. 

 

Consequently, by subtracting (3.6) from (2.21), we obtain: 
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By using further (3.9), then (4.1) can be applied at point  x  on the boundary  , as follows: 
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Beyond the above, the Petrov-Galerkin scheme can be used in order the weak form of (4.2) to 

be written as: 
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in which )(xu  denotes a test function on the boundary  . 

    

By using further (3.9), then from (4.3) follows: 
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Finally, by choosing the test function  f(x) in such way to be identical to a function which is 

energy-conjugate to u(x), then the following Galerkin SIOM is obtained: 
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Consequently, (4.5) is referred to a symmetric Galerkin SIOM. 
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5. Non-linear Seismic Wave Motion’s Application  

An application of the previous theory is studied, to the determination of the seismic field 

radiated from a pulsating sphere into an infinite homogeneous medium (Figure 1).  

 

 
 

Fig. 1 Pulsating Sphere Radiating Field into an Infinite Homogeneous Medium. 

 

 

Thus, by using the Singular Integral Operators Method (S.I.O.M.) as described in the previous 

paragraphs, then the computation of the acoustic pressure radiated from the above pulsating sphere 

is determined. 

  

In addition, the analytical solution of the acoustic pressure for a sphere of radius  a, pulsating 

with uniform radial velocity  av , is given in [7]: 

 

                                                             )(

0 )1(

)( arik

a

e
ika

ika

r

a

vz

rp 


                                                (5.1) 

 

where  p(r)  denotes the acoustic pressure at distance r, 0z  is the characteristic impedance and  k  

the wave number. 

    

In Table 1 and Table 2, the real and imaginary parts of dimensionless surface acoustic pressures 

are shown with respect to the reduced frequency ka. Thus, the computational results by using the 

S.I.O.M. were compared to the analytical solutions of the same problem. From the above Tables it 

can be seen that there is very small difference between the computational results and the analytical 

solutions. Finally same results are plotted, in Figures 2 and 3, and in three-dimensional form in 

Figures 2a and 3a. 
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Table 1 

 

ka Re(p(a)/z0va) 

Analytical 

Re(p(a)/z0va) 

S.I.O.M. 

0.00 0.00 0,00 

0.40 0.10 0.11 

0.60 0.30 0.32 

0.75 0.40 0.41 

1.00 0.50 0.52 

1.25 0.60 0.60 

1.50 0.70 0.71 

2.00 0.80 0.80 

2.50 0.86 0.87 

3.00 0.90 0.91 

3.50 0.92 0.93 

4.00 0.94 0.94 

4.50 0.96 0.96 

5.00 0.97 0.97 

6.00 0.98 0.98 

7.00 0.99 0.99 
7.50 0.99 0.99 

 

Table 2 

 

ka Im(p(a)/z0va) 

Analytical 

Im(p(a)/z0va) 

S.I.O.M. 

0.00 0.00 0,00 

0.20 0.22 0.23 

0.40 0.30 0.31 

0.50 0.40 0.41 

0.60 0.45 0.45 

0.80 0.48 0.48 

1.00 0.50 0.49 

1.50 0.45 0.45 

2.00 0.40 0.40 

2.50 0.35 0.36 

3.00 0.30 0.31 

3.50 0.26 0.26 

4.00 0.24 0.24 

4.50 0.21 0.21 

5.00 0.19 0.20 

5.50 0.17 0.17 

6.00 0.15 0.15 

6.50 0.14 0.14 

7.00 0.12 0.12 

7.50 0.11 0.11 
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Fig. 2 Real Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 

 

 

 
 

Fig. 2a  3-D Distribution of Real Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 

 

 

 

 

 
Fig. 3 Imaginary Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 
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Fig. 3a 3-D Distribution of Imaginary Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 

 

 

6. Conclusions 

The groundbreaking technology "Real-time Expert Seismology" as was introduced and 

investigated by E.G.Ladopoulos [27]-[32] is further improved for the exploration of on-shore and 

off-shore petroleum reservoir. Such a groundbreaking method can be used at any depth of seas and 

oceans all over the world ranging from 300 to 3000 m, or even deeper and for any depth like 

20,000 m or 30,000 m in the subsurface of existing petroleum reservoir.  

Consequently, the benefits of the new theory of "Real-time Expert Seismology" in comparison 

to the old theory of "Reflection Seismology" are the following, which makes the new method the 

most convenient for petroleum elastodynamics: 

1. The new method uses the special form of the crests of the geological anticlines of the bottom of 

the sea, in order to decide which areas of the bottom have the most possibilities to include 

petroleum. 

On the contrary, the existing theory is only based to the best chance and do not include any 

theoretical and sophisticated model. 

2. The new method of elastic (sound) waves is based on the difference of the speed of the sound 

waves which are traveling through solid, liquid, or gas. In a solid the elastic waves are moving 

faster than in a liquid and the air, and in a liquid faster than in the air. 

Existing theory is based on the application of Snell's law and Zoeppritz equations, which are not 

giving good results, as these which we are expecting with the new method. 

3. The new method is based on a Real-time Expert System working under Real Time Logic, that 

gives results in real time, which means every second. 

Existing theory does not include real time logic. 

Thus, from the above three points it can be well understood the evidence of the applicability of 

the modern technology of "Non-linear Real-time Expert Seismology". Besides its novelty, as it is 

based mostly on a theoretical and very sophisticated Real-time Expert model and not to practical 

tools like the existing method. 

By the current research, the Singular Integral Operators Method (S.I.O.M.) has been used for 

the solution of the elastodynamic problems used in "Non-linear Real-time Expert Seismology"  by 

applying the Helmholtz differential equation. In this derivation the gradients of the fundamental 

solution to the Helmholtz differential equation for the velocity potential, has been used. Moreover, 

several basic identities governing the fundamental solution to the Helmholtz differential equation 

for the velocity potential were analyzed and investigated. 

Hence, by using the S.I.O.M., then the acoustic velocity potential has be computed. Also, 

several properties of the wave equation, which is a Helmholtz differential equation, were proposed 

and investigated. Some basic properties of the fundamental solution have been further derived. 
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Finally, an application was given to the determination of the seismic field radiated from a 

pulsating sphere into an infinite homogeneous medium. So, by using the S.I.O.M., then the acoustic 

pressure radiated from the above pulsating sphere has be computed. This is very important in 

hydrocarbon reservoir engineering in order the size of the reservoir to be evaluated. 
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