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Abstract 
A non-linear 3-D elastic waves real - time expert system is proposed for the exploration of several 
oil and gas reserves, including off-shore oil reserves, of the seas all over the world, according to the 
new theory of "Real-Time Expert Seismology". Such Generic Technology will work under Real 
Time Logic for searching marine oil reserves developed on the continental crust and on deeper 
water ranging from 300 to 3000 m, or even more. The proposed real - time expert system will be 
therefore the best device for the exploration of the continental margin areas (shelf, slope and rise) 
and the very deep waters, too. Also, this expert system will be suitable for the exploration of on-
shore oil and gas reserves, as well. Beyond the above, for the determination of the properties of the 
reservoir materials, when oil reserves are moving through porous media, a new mathematical 
device is proposed. This problem is very much important for petroleum reservoir engineering and 
the oil industry. Therefore, the above mentioned problem is reduced to the solution of a non-linear 
singular integral equation, which is numerically evaluated by using the Singular Integral Operators 
Method (S.I.O.M.). Also, several properties are analyzed and investigated for the porous medium 
equation, defined as a Helmholtz differential equation. An application is finally given for a well 
testing to be checked when a heterogeneous oil reservoir is moving in a porous solid. So, by using 
the S.I.O.M., then the pressure response from the well test conducted in the above heterogeneous 
oil reservoir, is numerically calculated and investigated.  
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1. Introduction 

The study of the movement of oil reserves through porous media is very much important 
problem on petroleum reservoir engineering. Therefore, by applying a well testing analysis, then a 
history matching process takes place for the determination of the properties of the reservoir 
materials. The movement of oil reserves through porous media, produces both single-phase and 
multiphase flows. Furthermore, if a well test is conducted, then the well is subjected to a change of 
the flow rate and the pressure response can be further measured. For the determination of several 
petroleum reservoir parameters, such as permeability, then numerical calculations should be used, 
as analytical solutions in most cases are not possible to be derived.  

Over the past years several variants of the Boundary Element Method were used for the solution 
of petroleum reservoir engineering problems. At the end of eight's Lafe and Cheng [27] proposed a 
BEM for the solution of steady flows in heterogeneous solids. During the same period Masukawa 
and Horne [28] and Numbere and Tiab [29] applied boundary elements for steady state problems of 
streamline tracking.    

Furthermore, Kikani and Horne [13] solved transient problems by using a Laplace space 
boundary element model, for the analysis of well tests in several arbitrarily shaped reservoirs. Also, 
Koh and Tiab [14] used boundary elements to describe the flow around tortuous horizontal wells, 
for homogeneous, or piecewise homogeneous reservoirs. 

 1



E.G. Ladopoulos 
 

Sato and Horne [33], [34] applied perturbation boundary elements for the study of 
heterogeneous reservoirs. Beyond the above, El Harrouni et al. [4] proposed the use of a 
transformed form of Darcy's law combined with dual reciprocity boundary element method to 
handle heterogeneity. On the other hand, Onyejekwe [30] applied a Green element method to 
isothermal flows with second order reactions. The same author [31], [32] used a combined method 
of boundary elements together with finite elements for the study of heterogeneous reservoirs. 
Furthermore, Taigbenu and Onyejekwe [37] applied a transient one-dimensional transport equation 
by using a mixed Green element method. 

During the last years several non-linear singular integral equations methods were used 
successfully by Ladopoulos [15] - [24] for the solution of applied problems of solid mechanics, 
elastodynamics, structural analysis, fluid mechanics and aerodynamics. Thus, in the present 
research, the non-linear singular integral equations will be used in order to determine the properties 
of the reservoir materials, when oil reserves are moving through porous solids. 

 By using therefore, the Singular Integral Operators Method (S.I.O.M.) then the pressure 
response from the well test conducted in a heterogeneous reservoir will be computed. Also, some 
properties of the porous medium equation, which is a Helmholtz differential equation are proposed 
and investigated. Thus, basic properties of the fundamental solution will be analyzed and 
investigated. 

 Finally, an application is given for a well testing to be investigated when a heterogeneous oil 
reservoir is moving in a porous medium. Then, this problem will be solved by using the Singular 
Integral Operators Method and thus the pressure response from the well test conducted in this 
heterogeneous oil reservoir, will be computed. 

 Consequently, the non-linear singular integral equation methods which were used with big 
success for the solution of several engineering problems of fluid mechanics, hydraulics, 
aerodynamics, solid mechanics, elastodynamics, and structural analysis, are further extended by the 
present study for the solution of oil reservoir engineering problems. In such case the non-linear 
singular integral equations are used for the solution of one of the most important and interesting 
problems for petroleum engineers. 
 
2. Real-time Expert Seismology 

The research and development aspects of marine oil reserves can be divided into three main 
areas: 

(a) The acquisition and analysis of geophysical, geological and reservoir engineering data to 
enable an appreciation to be made of the reserves. 

(b) The determination of all-necessary standards and data for the safety to offshore operations. 
(c) To assist the development of the offshore supplies industry, and to enable it to play a full part 

in the development of the marine hydrocarbon resources in worldwide markets in the future. 
 

Worldwide geological surveys by oil companies and scientific institutes indicate that such 
prospects do not necessarily end at the edge of the continental shelf. Normal probability 
considerations indicate that main resources will be found in areas of thick sedimentary sequences 
developed on the continental crust. There is therefore an expectation with good possibilities for 
finding marine oil resources in deep waters, too. These will be on the shelf, slope and rise of the 
Earth's margin, and the depths of water would not only range up to 300 m, but also in deeper waters 
from 300 m to 3000 m, or even much more. 
 

The behavior of a reservoir, depends not only on the properties of the liquid and gas, but also on 
a series of factors that may be termed as the "properties of the environment". Amongst these are 
such items as capillary - pressure effects, the reaction of rock when subjected to high stress, 
pressure and temperature gradients at the shallower levels in the Earth's crust and influences of the 
compressibility as pressure are reduced by fluid withdrawals. 
 

There are four conditions that must be satisfied so that a geological formation, or a part thereof, 
should form a suitable reservoir, for example for the accumulation of oil. These are porosity, 
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permeability, seal and closure. The first defines the pore space in the rock - space in which the oil 
may collect. Permeability is the attribute of the rock that permits the passage of fluid through it. 
Generally, it is a measure of the degree interconnectedness, of the pore space, but some reservoir 
(e.g. in the massive limestone deposits, or in igneous intrusions) depend for fluid flow on a network 
of fractures within the rock. 
 

Furthermore, the seal is the "cap" of the reservoir and prevents the oil from leaking away, while 
closure is a measure of the vertical extent of the sealed trap or, in the case of resources 
accumulation bounded below by a moving body of water, of the "height" of the sealed trap where 
that height is measured along a line perpendicular to the oil - water contact.  
 

 Almost all resources occur in sedimentary basins, in porous standstones or limestones and that 
seal or cap rock is often a clay or shale, or massive unfractured limestone having little or no 
permeability. On the other hand, three general categories of resources can be mentioned for marine 
reserves: structural traps, stratigraphic traps and combination traps. 
 

Elastic waves are sound waves, generally three - dimensional and they may be transmitted 
through matter in any phase - solid, liquid, or gas. Any body vibrating in air gives rise to such 
waves, as it alternately compresses and rarefies the air adjacent to its surfaces. A body vibrating in 
a liquid, or in contact with a solid, likewise generates similar longitudinal waves. The frequency of 
the waves is of course the same as the frequency of the vibrating body which produces them. 
 

The distance between two successive maxima (or between any two successive points in the 
same phase) is the wavelength of the wave and is denoted by l. Since the wave form, travelling 
with constant velocity u, advances a distance of one wavelength in a time interval of one period, it 
follows that the velocity of sound waves u as following: 

 
                                                                          u = l ν                                                                   (2.1) 
 
where ν denotes the frequency. 
    

As it is obvious the velocity u differs when the sound waves are travelling through solid, liquid, 
or gas. In a solid the elastic waves are moving faster than in a liquid and the air, and in a liquid 
faster than in the air. Therefore, if somebody is searching for example for oil marine resources over 
the sea, by transmitting sound waves, then there will be a difference in the velocity of the waves in 
the air, the sea, the solid bottom and in a potential reservoir. 
 

In order to better explain the new method, consider the example of Figure 1. In this case 
consider that in the bottom of the sea there is a potential oil reservoir. Then, the speed of the elastic 
waves in the air (uair), will be different from the speed in the water (uwater),  and different from the 
speed in the solid bottom (usolid) and different from the speed in the potential reservoir (uoil), while 
the frequency of the elastic waves remaining the same when transmitted through every different 
matter. 

 
A real - time non-linear 3-D plane - polarized elastic waves expert system is proposed in order 

to explore the marine oil resources, for the several closed seas all over the world, according to the 
new theory of "Real-time Expert Seismology" as proposed by Ladopoulos [25], [26], in contrast to 
the old theory of "Reflection Seismology" (Aki and Richards [1], Hale [9], Thomsen [38], [39],  
Dellinger, Muir and Karrenbach [3], Harrison and Stewart [10], Tsvankin and Thomsen [40], 
Alkhalifah and Tsvankin [2], Gaiser [7],  Schmelzbach, Green and Horstmeyer [35], Schmelzbach, 
Horstmeyer and Juhlin [36]). Such Generic Sound Waves Technology will work under Real Time 
Logic for searching marine hydrocarbon reservoir developed on the continental crust and on deeper 
waters ranging from 300 m to 3000 m, or even much deeper (Figure 2). There are many deeper 
water prospects around the seas all over the world, but because of the paucity of the available 
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information it is not possible at present to quantify the amounts that may be recoverable from them. 
For this reason the proposed real - time elastic waves expert system will be the best device for the 
exploration of the continental margin areas (shelf, slope and rise) and the very deep waters, too. 

 
 

 
 

Fig. 1 Elastic Waves Method for the Exploration of Marine Resources. 
 
 

 
 

Fig. 2 Real-time Expert Seismology. 
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By using the proposed modern technology of "Real-Time Expert Seismology" the average 
velocity of the sound waves is calculated by providing important information about the 
composition of the solids through of which passed the sound waves. For example the velocity of 
the sound waves through the air is 331 m/sec, through liquid 1500 m/sec and through sedimentary 
rock 2000 to 5000 m/sec. Furthermore, according to the law of Reflection the angle of reflection 
equals the angle of incidence (Figure 3). Then according to the new method the arrival times of the 
seismic waves are analyzed. After the sensor measures the precise arrival time of the wave, then the 
velocity of the wave can be calculated by using the method which follows. 

 
 

 
 

Fig. 3 Law of Reflection. 
 

    
The travel time T of the seismic waves is given by the relation: 
 

 

                                                              
v

xd
T

2/122
42 ⎟
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=                                                        (2.2) 

 
where  d denotes the depth, x the distance between source of wave and the geophone or hydrophone 
detector and v is the average speed. 
  

Beyond the above, from (2.2) follows equation (2.3): 
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=                                                            (2.3) 

 
 

 Also, the normal incident time To   is given by the formula: 
 

 

                                                                        
v
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2
=                                                                  (2.4) 

From eqs (2.3) and (2.4) finally follows: 
 

 

 5



E.G. Ladopoulos 
 

                                                                   2

2
22

v
xTT o =−                                                              (2.5) 

 
Hence, from eqn (2.5) follows that the travel time curve for a constant velocity horizontal layer 

model is a hyperbola whose apex is at the zero-offset travel time To:                                                                       
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Finally from (2.5) the mean velocity is equal to: 

 

                                                                 
22

oTT

xv
−

=                                                               (2.7)   

 
Thus, a real time expert system is used and the apparatus permitted excitation of any 

combination of elements and reception of any other, visual analysis of the responses, and transfer 
of the signals to the PC for post processing. The sequencing of transducer excitation, digitiser 
configuration and subsequent data analysis was performed by a rule based Real-Time Expert 
System. From the information gathered, the Expert System applies knowledge via a series of 
software coded rules and provides any one of the following conditions: speed in the air (uair), speed 
in the water (uwater), speed in the solid bottom (usolid) and speed in the potential reservoir (uoil), 
     

Real-time logic (RTL) is a reasoning system for real-time properties of computer based systems. 
RTL's computational model consists of events, actions, causality relations, and timing constraint 
(Jahanian and Mok [11], [12], Emnis et al. [5], Fritz, Haase and Kalcher [6], Haase [8]). This 
model is expressed in a first order logic describing the system properties as well as the systems 
dependency on external events. The RTL system introduces time to the first logic formulas with an 
event occurrence function, which assign time values to event occurrences. Furthermore, real-time 
computing in common practice is characterized by two major criteria: deterministic and fast 
response to external stimulation, and both human and sensor and actor based interaction with the 
external world. Real-time is an external requirement for a peace of software; it is not a 
programming technology. 
 

In general, Real-Time Logic uses three types of constraints: 
1. Action constants may be primitive or composite. In a composite constant, precedence is 

imposed by the event-action model using sequential or parallel relations between actions. 
2. Event constants are divided into three cases. Start/stop events describe the 

initiation/termination of an action or subaction. Transition events are those which make a 
change in state attributes. This means, that a transition event changes an assertion about the 
state of the real-time system or its environment. The third class, which are the external events, 
includes those that can be impact the system behavior, but cannot be caused by the system. 

3. Integers assigned by the accurance function provide time values, and also denote the number of 
an event occurance in a sequence. 

 
Moreover, the RTL System introduces time to the first order logic formulas with an event 

occurance function denoted by e. The mechanism to achieve a timing property of a system is the 
deduction resolution. 
 

Consider further the following example: Upon pressing button ≠ 20, action TEST is extended 
within 200 time units. Dusting each execution of this action, the information is sampled and 
subsequently transmitted to the display panel. Also, the computation time of action TEST is 80 
time units. 
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This example can be further translated into the following two formulas: 
 

           ∀  x  : e (  Ω   button  20,  x )     ≤   e (  ↑   TEST  ,  x  )   ∧ 
                      e (  ↓   TEST  ,  x  )       ≤   e (  Ω   button  20,  x )  + 200 
           ∀  y  : e (  ↑   TEST  ,  y  )   +  80   ≤    e (  ↓   TEST  , y ) 
 
 
3. Well Test Analysis for Oil Reservoir 

Oil well test analysis is a kind of an important history matching process for the determination of 
the properties of reservoir materials. Thus, during the movement of oil reservoir through porous 
media, then both single-phase and multiphase flow occurs. Also, when a petroleum well test is 
conducted then the well is subjected to a change of its flow rate and the resulting pressure response 
is possible to be measured. This pressure is further compared to analytical or numerical models in 
order to estimate reservoir parameters such as permeability. 
 

In general an oil reservoir well test in a single-phase reservoir is calculated by using the porous 
medium equation: 

 

                                    
t
pcp t ∂
∂

=∇•∇ )(
φξ
λ

           (3.1) 

 
in which λ  denotes the permeability, φ  the porosity, ξ  the viscosity,  p the pressure of the 
reservoir,  t  the time and ct  the compressibility. 
 

By replacing variables as follows: 
 

                                      pu 2/1)(
φξ
λ

=           (3.2) 

then (3.1) can be written as: 
 

                                                                                     (3.3) 02 =′+∇ uu λ
with : 

                                                                     
2/1

2/12

)(

)(

φξ
λ

φξ
λ

λ
∇

−=′                                                  (3.4) 

 
Hence, (3.3) is a Helmholtz differential equation. 
 

Beyond the above, consider by  u*(x,y) the fundamental solution of any point  y, because of the 
source point x. Then, the fundamental solution can be given by the following equation:  

 

                                     (3.5a) 0),(),(),( **2 =+′+∇ yxyxyx δλ uu
 
which may be further written as: 
 
                                                                                          (3.5b) 0),(),(),( **

, =+′+ yxyxyx δλ uu ii

 
Thus, (3.5) is the Helmholtz potential equation governing the fundamental solution. 
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Consider further by u* the fundamental solution chosen so that to enforce the Helmholtz 
equation in terms of the function  u, in a weak form. Then the weak form of Helmholtz equation 
will be written as following: 

 
 
                                                                                                             (3.6) 0)( *2 =′+∇∫ Ωλ

Ω

duuu

 
in the solution domain Ω. 
    

Also, by applying the divergence theorem once in (3.6), one obtains a symmetric weak form: 
 

                                                                                 (3.7) 0**
,,

*
, =′+− ∫∫∫

∂

ΩλΩ
ΩΩΩ

duuduudSuun iiii

 
in which n denotes the outward normal vector of the surface  S. 
    

Therefore, in the symmetric weak form the function  u and the fundamental solution u* are only 
required to be first - order differentiable. By applying further the divergence theorem twice in (3.6) 
one has: 

 
 
                                                                    (3.8) 0)( **

,
*
,

*
, =′++− ∫∫∫

∂∂
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ΩΩΩ

duuudSuundSuun iiiiii

 
Hence, (3.8) is the asymmetric weak form and the fundamental solution u*  is required to be 

second - order differentiable. On the other hand, u is not required to be differentiable in the domain 
Ω.   
 

By combining (3.5) and (3.8), then one obtains: 
 
                                                      (3.9) dSuundSuunu iiii ).,()()(),()()()( *

,
*

, yxyyyxyyx ∫∫
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−=
ΩΩ

 
which can be further written as: 
 
 
                                                                          (3.10) dSRudSuqu ∫∫
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−=
ΩΩ

),()(),()()( ** yxyyxyx

 
where  q(y) denotes the potential gradient along the outward normal direction of the boundary 
surface: 
 

                                                 Ω∂∈=
∂
∂

= yyyyy ,)()()()( ,kk
y
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n

uq                                  (3.11) 

and the kernel function: 
 

                                         Ω∂∈=
∂

∂
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,

*
*
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n
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By differentiating (3.10) with respect to xk  we obtain the integral equation for potential 
gradients  u,k(x) by the following formula: 

 
 

                                       dS
x

RudS
x

uq
x

u
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∫ ∫
∂ ∂ ∂

∂
−

∂
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=
∂
∂
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4. Fundamental Solution's Basic Properties  

We rewrite the weak form of (3.5) governing the fundamental solution, as follows: 
 

                                                       (4.1) [ ] ΩΩλ
Ω

∈=+′+∇∫ xyxyx ,0),(),( **2 ccduu

 
where c denotes a constant, considering as the test function. 
 

Also, (4.1) can be written as: 
 
                                                                            (4.2) [ ] ΩΩλ

Ω

∈=+′+∫ xyxyx ,01),(),( **
, duu ii

    
Furthermore, (4.2) takes the form: 
 

 
                                                             (4.3) ΩΩλ

ΩΩ

∈=+′+ ∫∫
∂

xyxyxy ,01),(),()( **
, dudSun ii

     
By considering further an arbitrary function u(x) in Ω as the test function, then the weak form of 

(3.5) will be written as: 
 

 
                           [ ] ΩΩδλ

Ω

∈=+′+∇∫ xxyxyxyx ,0)(),(),(),( **2 duuu                       (4.4) 

and also as: 
 

                                           (4.5) [ ] ΩΩλ
Ω

∈=+′+∫ xxxyxyx ,0)()(),(),( **
, uduuu ii

    
  Finally, (4.5) takes the form: 

 
    
                                                (4.6) ∫ ∫

∂

∈=+′+
Ω Ω

ΩΩλΦ xxxyxxyx ,0)()(),()(),( ** uduudSu

   
If x approaches the smooth boundary )( Ω∂∈x , then the first term in (4.6) may be written as:    

 

                lim )(
2
1)(),()(),( ** xxyxxyx udSudSu

CPV

∫∫
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−=
ΩΩ

ΦΦ                      (4.7) 

                           x→ Ω∂  
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in the sense of a Cauchy Principal Value (CPV) integral. 
 

   For the understanding of the physical meaning of (4.7), we rewrite (4.3) and (4.6) as:  
 

                    ΩΩλΦ
Ω Ω

∂∈=+′+∫ ∫
∂

xdudS
CPV

,0),(),( 2
1** yxyx                       (4.8) 

 and: 

                   ΩΩλΦ
Ω Ω

∂∈=+′+∫ ∫
∂

xuduudSu
CPV

,0)()(),()(),( 2
1** xxyxxyx                       (4.9) 

   
By (4.8) follows that only a half of the source function at point x is applied to the domain Ω,  

when the point x approaches a smooth boundary, Ω∂∈x . 
 

Also, consider another weak form of (3.5) by supposing the vector functions to be the gradients 
of an arbitrary function u(y) in Ω, chosen in such a way that they have constant values:  

  
                         )()( ,, xy kk uu = ,     for  k=1,2,3                                                (4.10) 
 

Then the weak form of (3.5) will be written as:   
 

 
                                                                      (4.11) [ ] 0)()(),(),( ,,

**
, =+′′+∫ xyyxyx kkii uduuu Ωλ

Ω

 
By applying further the divergence theorem, then (4.11) takes the form:      
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Furthermore, the following property exists: 

 
                                                    ∫ ∫

∂ ∂

−
Ω Ω
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,,

*
,, yxxyyxxy

                                                                                                                                                     (4.13)
     
                                   0),()(),()( *

,,
*
, =−= ∫ ∫

∂Ω Ω

dSuudSuu ikikii yxxyxx

    
 
By adding (4.12) and (4.13) then one obtains: 
 
 

 
                                                          ∫ ∫
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−
Ω Ω
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,,

*
,, yxxyyxxy

                                                                                                                                                    (4.14)
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                                 0)()(),()(),( ,,
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,
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∂Ω Ω

ΩλΦ xxyxxyx kkk uduudSu

 
which takes finally the form: 
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5. Analysis by Non-linear Singular Integral Equations  

The porous medium equation (3.1) will be further written in another form, in order a singular 
integral equations representation to be applicable: 
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By applying the Green Element Method, then (5.1) reduces to the solution of a non-linear 

singular integral equation: 
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in which: 
 

                                                                         tc
λ
ξΦΛ =                                                            (5.3) 

 
In order the non-linear singular integral equation (5.2) to be numerically evaluated, then the 

Singular Integral Operators Method (S.I.O.M.) will be used. Thus, the non-linear singular integral 
equation (5.2) is approximated by the formula: 
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                                                                                                                                                      (5.4) 
where M  denotes the total number of elements. 
 

Beyond the above, let us introduce the following functions describing the pressure at any point 
in an element, in terms of the nodal pressures: 
 
                                                                     jj pyxNyxp ),(),( =                                               (5.5) 
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 By replacing (5.5) then (5.4) takes the form: 
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6. Well Testings Applications in Heterogeneous Reservoirs  

The previous mentioned theory will be applied to the determination of a well testing, which will 
be checked in an heterogeneous reservoir with a permeability varying from 10 mD to 300 mD 
(1mDarcy ≈ 10-12 m2 = 1(µm)2).       
   

So, by using the Singular Integral Operators Method (S.I.O.M.) as described by the previous 
paragraphs, then the computation of the pressure response from the well test conducted in the 
above heterogeneous reservoir will become possible. Firstly, the pressures were computed in 
variation with the time. Thus, Table 1 shows the pressure response with respect to the time. 
 

In addition, the pressure derivatives were computed with respect to the time, as shown in Table 
2. Such derivatives are very much important of the well testings interpretation as these are some 
distinct shapes and especially the characteristics of certain reservoir features. 
 

The computational results of the pressures and the pressure derivatives are compared to the 
analytical solutions of the same well testing problem, if the reservoir was homogeneous with 
permeability equal to 50 mD. So, the analytical results are shown in Table 1 for the pressures and 
in Table 2 for the pressure derivatives, correspondingly. From the above Tables it can be seen that 
there is very small difference between the computational results and the analytical solutions for 
both the pressures and the pressure derivatives. On the other hand, the above mentioned small 
difference can be explained because of the diffusive nature of the pressure transport mechanism. 
Finally same results are shown, correspondingly in Figures 4 and 5, and in three-dimensional form 
in Figures 4a and 5a. 
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Table 1 
 

Time 
(hours) 

Pressure (psi) 
S.I.O.M. 

Pressure (psi) 
Analytical 

0.002 7.003 7.022 
0.009 10.002 10.013 
0.015 12.002 12.031 
0.030 12.504 12.523 
0.040 13.003 13.014 
0.070 13.503 13.502 
0.100 14.002 14.033 
0.250 14.501 14.521 
0.400 15.004 15.032 
1.000 15.502 15.514 
2.000 16.004 16.023 
10.00 17.002 17.022 
30.00 17.504 17.524 
80.00 18.001 18.042 
100.00 19.003 19.032 
200.00 20.000 20.030 
400.00 20.000 20.020 
600.00 20.000 20.010 

1000.00 20.000 20.000 
 
 
 

Table 2 
 

Time 
(hours) 

Pressure Derivative (psi) 
S.I.O.M. 

Pressure Derivative (psi) 
Analytical 

0.002 1.504 2.002 
0.009 2.002 2.003 
0.015 2.001 2.003 
0.030 2.002 2.002 
0.040 2.003 2.002 
0.070 2.004 2.003 
0.100 2.002 2.004 
0.250 2.001 2.002 
0.400 2.003 2.003 
1.000 2.002 2.002 
2.000 2.004 2.003 
10.00 2.001 2.002 
30.00 2.003 2.003 
80.00 2.002 2.003 
100.00 1.001 1.301 
200.00 0.600 0.800 
400.00 0.250 0.260 
600.00 0.060 0.060 

1000.00 0.030 0.010 
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Fig. 4 Pressure Response for Well Test in Heterogeneous Reservoir. 
 

 

 
 
 

Fig. 4a 3-D Distribution of Pressure Response for Well Test in Heterogeneous Reservoir. 
 

 
 

Fig. 5 Pressure Derivative for Well Test in Heterogeneous Reservoir. 
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Fig. 5a 3-D Distribution of Pressure Derivative for Well Test in Heterogeneous Reservoir. 
 

 
7. Conclusions 

By the present investigation the new theory of "Real-time Expert Seismology" has been 
introduced and investigated for the exploration of on-shore and off-shore oil reserves. The benefits 
of the new technology of "Real-time Expert Seismology" in comparison to the existing theory of 
"Reflection Seismology" are the following: 
1. The new theory is based on the special form of the geological anticlines of the bottom of the sea, 
in order to decide which areas of the bottom have the most possibilities to include petroleum. 
On the other hand, the existing theory is only based to the best chance and do not include any 
theoretical and sophisticated model. 
2. The new theory of elastic (sound) waves is based on the difference of the speed of the sound 
waves which are traveling through solid, liquid, or gas. In a solid the elastic waves are moving 
faster than in a liquid and the air, and in a liquid faster than in the air. 
Existing theory is based on the application of Snell's law and Zoeppritz equations, which are not 
giving good results, as these which we are expecting with the new method. 
3. The new theory is based on a Real-time Expert System working under Real Time Logic, that 
gives results in real time, which means every second. 
Existing theory do not include real time logic. 

From the above three points it can be well understood the evidence of the applicability of the 
new method of "Real-time Expert Seismology". Also its novelty, as it is based mostly on a 
theoretical and very sophisticated Real-time Expert model and not to practical tools like the 
existing method. 

Also, a mathematical model has been presented as an attempt to determine the properties of the 
reservoir materials. So, the study of the movement of oil reserves through porous media is very 
important for petroleum reservoir engineers. The above mentioned problem was reduced to the 
solution of a non-linear singular integral equation, which was numerically evaluated by using the 
Singular Integral Operators Method (S.I.O.M.). 

 Furthermore, several important properties of the porous medium equation, which is a 
Helmholtz differential equation, were analyzed and investigated. Thus, the fundamental solution of 
the porous medium equation was proposed and studied. Also, some basic properties of the 
fundamental solution were further investigated. These are very important in order the behavior of 
the non-linear singular integral equation to be well understood. 
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An application was finally given for a well testing to be checked when a heterogeneous oil 
reservoir is moving in a porous solid. The above problem was solved by using the Singular Integral 
Operators Method and thus the pressure response from the well test conducted in the above 
heterogeneous oil reservoir, was computed. Both the pressures and the pressure derivatives were 
computed and these values were compared to the analytical solutions of the same well testing 
problem, if the reservoir was homogeneous with a mean permeability. 

Over the last years, non-linear singular integral equation methods have been used with a big 
success for the solution of several important engineering problems of structural analysis, 
elastodynamics, hydraulics, fluid mechanics and aerodynamics. For the numerical evaluation of the 
non-linear singular integral equations of the above problems, were used several aspects of the 
Singular Integral Operators Method (S.I.O.M.). Thus, by the present research such methods were 
extended for the solution of oil reserves problems in petroleum reservoir engineering.   

The benefits of the new method in comparison to existing methods are the following: 
1. The new method is based on the non-linear programming method, by using non-linear singular 
equations. According to this theory the porous medium equation is reduced to the solution of a non-
linear singular integral equation which is then numerically evaluated by using a non-linear 
programming method. 
Existing methods of well test analysis, are using too as a start the porous medium equation, but as 
this is a complicated differential equation are giving only some analytical solutions for very simple 
cases or numerical solutions for homogeneous reservoir materials.. 
2. The new method, as it is a complicated non-linear numerical method can give results for 
heterogeneous porous media (which of course are the solids in reality) and not only for 
homogeneous solids as are giving the analytical or numerical existing methods. 
So the estimation of the properties and the future petroleum production from a new oil reservoir 
could be done exactly, and not estimated as by the existing methods. 

From the above two points it can be understood the evidence of the applicability of the new 
method, as it is based on non-linear software.  Also its novelty, as it is based on the theory of non-
linear singular integral equations.  
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