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Abstract

For the determination of the properties of the reservoir materials, when petroleum reserves are
moving through porous media, a sophisticated and groundbreaking mathematical model is further
investigated. This problem is very much important for petroleum reserves engineering and the
major oil industry and especially in hydraulic fracturing. Thus, hydraulic fracturing is used to
increase the rate at which fluids, such as petroleum, water, or natural gas can be recovered from
subterranean natural reservoirs. Reservoirs are typically porous sandstones, limestones or dolomite
rocks, but also include "unconventional reservoirs" such as shale rock or coal beds. Consequently,
this problem is reduced to the solution of a non-linear singular integral equation, which is
numerically evaluated by using the Non-linear Singular Integral Operators Method (N.S.1.O.M.).
Beyond the above, several properties are analyzed and investigated for the porous medium
equation, defined as a Helmholtz differential equation. An application is finally given for a well
testing to be checked when a heterogeneous petroleum reservoir is moving in a porous solid. Thus,
by using the S.1.O.M., then the pressure response from the well test conducted in the above
heterogeneous petroleum reservoir, is numerically approximated.
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1. Introduction

Hydraulic fracturing is a well-stimulation method in which rock is fractured by a hydraulically
pressurized liquid made of water, sand, and chemicals. A high-pressure fluid (usually chemicals
and sand suspended in water) is injected into a wellbore to create cracks in the deep-rock
formations through which natural gas and petroleum will flow more freely. When the hydraulic
pressure is removed from the well, small grains of hydraulic fracturing proppants (either sand or
aluminium oxide) hold the fractures open. Thus, the hydraulic fracture is formed by pumping
fracturing fluid into a wellbore at a rate sufficient to increase pressure at the target depth in order to
exceed that of the fracture pressure gradient of the rock.

Consequently, hydraulic fracturing is used to increase the rate at which fluids, such as
petroleum, water, or natural gas can be recovered from subterranean natural reservoirs. Reservoirs
are typically porous sandstones, limestones or dolomite rocks, but also include "unconventional
reservoirs™ such as shale rock or coal beds. Hydraulic fracturing enables the extraction of natural
gas and oil from rock formations deep below the earth’s surface (generally 2,000-6,000 m), which
is greatly below typical groundwater reservoir levels. At such depth, there may be insufficient
permeability or reservoir pressure to allow natural gas and oil to flow from the rock into the
wellbore at high economic return.

Typically, 90% of the hydraulically pressurized fluid is water and 9.5% is sand with chemical
additives accounting to about 0.5%. Additionally, proppants are solid material, typically treated
sand or man-made ceramic materials, designed to keep an induced hydraulic fracture open, during
or following a fracturing treatment.
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It is added to the fracturing fluid which may vary in composition depending on the type of
fracturing used, and can be gel, foam or slickwater-based. Beyond the above, there may be
unconventional fracking fluids. Fluids make tradeoffs in such material properties as viscosity,
where more viscous fluids can carry more concentrated proppant; the energy or pressure demands
to maintain a certain flux pump rate (flow velocity) that will conduct the proppant appropriately;
pH, various rheological factors, among others.

Hence, sand is used to “prop open” fractures in shale rock and allow oil and gas to flow freely.
The goal of the present paper is to propose a groundbreaking method to reduce the amount of sand
required to drill and maintain productive wells. Thus, by the present research a new method will be
proposed in order to minimize the quantity of sand which is used for the hydraulic fracturing
solution when injected downhole. The proposed new technology will have the potential to improve
the environment for affected communities. Drilling new wells requires thousands of truck trips
through these communities, which snarls traffic and creates noise, dust and exhaust fumes. Trucks
carrying sand account for a large percentage of the truck traffic to drilling fields.

Weight limits on community roadways prevent sand delivery trucks from hauling maximum
capacity loads. Consequently, in order to improve the health and safety of these communities, an
innovative technology will be improved in order to reduce the amount of sand required for
hydraulic fracturing of oil and gas wells. By using sand more efficiently will eliminate thousands
of truck trips every year, as sand is combined with hydraulic fracturing fluid and injected as a
slurry into horizontal wells. So, the fluid fractures the shale rock and the sand fills the fractures
with a strong but porous material that allows petroleum and gas to flow freely from the fractured
rock. The proposed new technology will keep sand suspended in solution so that it can efficiently
fill each fracture would reduce the amount of sand and trucks required to maximize petroleum and
gas recovery from wells.

Thus, in order to minimize the requested sand for the hydraulic fracturing model, the Non-linear
Singular Integral Operators Method (N.S.1.O.M.) for porous medium analysis will be used. By
using the above method then the viscosity of the fracturing fluid will be modified. Hence, the study
of the movement of oil reserves through porous media is very much important problem on
petroleum reservoir engineering. Then by applying a well testing analysis, then a history matching
process takes place for the determination of the properties of the reservoir materials. The
movement of petroleum reserves through porous media, produces both single-phase and multiphase
flows. So, if a well test is conducted, then the well is subjected to a change of the flow rate and the
pressure response can be further measured. For the determination of several petroleum reservoir
parameters, such as permeability, then numerical calculations should be used, as analytical
solutions in most cases are not possible to be derived.

Over the past years several non-linear singular integral equations methods were used
successfully by E.G. Ladopoulos [1] - [38] for the solution of many applied problems of petroleum
engineering. Thus, by the present research, the non-linear singular integral equations will be
proposed in order to determine the properties of the reservoir materials, when petroleum reserves
are moving through porous solids.

By using therefore, the Non-linear Singular Integral Operators Method (N.S.1.O.M.), then the
pressure response from the well test conducted in a heterogeneous reservoir will be computed.
Hence, some properties of the porous medium equation, which is a Helmholtz differential equation
are proposed and investigated. Thus, basic properties of the fundamental solution will be analyzed
and investigated.

So, the non-linear singular integral equation methods which were used with big success for the
solution of several petroleum engineering problems, are further extended by the present study for
the solution of hydraulic fracturing problems. In such case the non-linear singular integral
equations are used for the solution of one of the most important and interesting problems for
petroleum engineers.

2. 4-D Hydraulic Fracturing through Well Test Analysis
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Petroleum well test analysis is a kind of an important history matching process for the
determination of the properties of reservoir materials. So, during the movement of petroleum
reserves through porous media, then both single-phase and multiphase flow occurs. Thus, when a
petroleum well test is conducted then the well is subjected to a change of its flow rate and the
resulting pressure response is possible to be measured. This pressure is further compared to
analytical or numerical models in order to estimate reservoir parameters such as permeability.

Generally, a petroleum reservoir well test in a single-phase reservoir is calculated by using the
porous medium equation:

Vo(in):c P» (2.2)

P& Lot

in which 4 denotes the permeability, ¢ the porosity, ¢ the viscosity, p the pressure of the
reservoir, t the time and c, the compressibility.

By replacing variables as follows:

ﬂ“ 1/2
u=(——)""p (2.2)
24
then (2.1) can be written as:
Viu+Au=0 (2.3)
with :
VZ(//i )1/2
A= /¢§ (2.4)

Thus, (2.3) is a Helmholtz differential equation.

In addition, consider by u’(x,y) the fundamental solution of any point y, because of the source
point x. Then, the fundamental solution can be given by the following equation:

VAU (x,y) + AU (X, y) +5(x,y)=0 (2.5a)
which may be further written as:

UG (%, Y) + AU (X,y) +5(x,y)=0 (2.5b)
Thus, (2.5) is the Helmholtz potential equation governing the fundamental solution.

Consider further by u” the fundamental solution chosen so that to enforce the Helmholtz
equation in terms of the function u, in a weak form. Then the weak form of Helmholtz equation
will be written as following:

I(V2u+/1’u)u*d.(2 =0 (2.6)
Q

in the solution domain Q.
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Furthermore, by applying the divergence theorem once in (3.6), we obtain a symmetric weak
form:

J'niu]iu*ds—J'u,iu‘*id.(2+j/1’uu*d.(2:0 2.7)
(2] 0

[e10]
where n denotes the outward normal vector of the surface S.
So, in the symmetric weak form the function u and the fundamental solution u” are only

required to be first - order differentiable. By applying further the divergence theorem twice in (2.6)
we have:

Iniu,iu*dS —~ jniuude + ju(u; +Au")dR=0 (2.8)
o2 oQ Q

Hence, (2.8) is the asymmetric weak form and the fundamental solution u” is required to be
second - order differentiable. On the contrary, u is not required to be differentiable in the domain
Q.

By combining (2.5) and (2.8), then one obtains:

U= [, (U, (YU )dS — [y (Y)u(y)u; (x.y)dS (29)

which can be further written as:

u()=[ay)u" (¢ y)ds - [u(y)R"(x y)ds (210)

where q(y) denotes the potential gradient along the outward normal direction of the boundary
surface:

_ou(y)
ay)= P

y

=n,(Y)u,(y) , yeoQR (2.11)

and the kernel function:

R (x,Y) =W=m WULY) + yeon (2.12)

y

By differentiating (2.10) with respect to xx we obtain the integral equation for potential
gradients u,(x) by the following formula:

ag(X) _ J‘q(y) ou (x,y) ds — J‘u(y)wds (2.13)
Xy a0 8Xk 2e 8Xk
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3. Basic Properties for the Fundamental Solution in 4-D Porous Medium Analysis

We rewrite the weak form of (2.5) governing the fundamental solution, as follows:

I[Vzu*(x,y)+/1'u*(x,y)]cd.(2 +¢=0, xen (3.1)

where c denotes a constant, considering as the test function.

Beyond the above, (3.1) can be written as:

Huji (X,y)+A'u (X, y)]d.Q +1=0, xeQ (3.2)

Additionally, (3.2) takes the form:

Ini (y)u’; (x,y)dS + Iﬂ’u*(x,y)dQ +1=0, xeQ (3.3)
o 0

By considering further an arbitrary function u(x) in Q as the test function, then the weak form of
(2.5) will be written as:

I[Vzu*(x,y) + AU (X,y) + 5(x,y)]1(x)d.(2 =0, xen (3.4)
and also as: ’

J'[u:i (X,y)+Au" (X, y)] u(x)d2+u(x)=0, xe (3.5)
Finally, (3.5) takes the form:
I(D* (X, y)u(x)dS + J./i'u*(x, Yu(X)d2+u(x)=0, xe (3.6)
o 0

If x approaches the smooth boundary (X € 0£2), then the first term in (3.6) may be written as:

CPV

iim [ @ (¢ y)u(ds = | cp*(x,y)u(x)dS—%u(x) (37)
x—)ég -

in the sense of a Cauchy Principal Value (CPV) integral.

For the understanding of the physical meaning of (3.7), we rewrite (3.3) and (3.6) as:

CPV

_[cp* (x,y)dS + Iﬁ’u*(x,y)dQ +1%=0, xeoQ (3.8)
00 Q
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and:
CPV

_[ @ (x,y)u(x)ds + J./l'u*(x,y)u(x)dQ +4u(x)=0, xeoR (3.9)

By (3.8) follows that only a half of the source function at point x is applied to the domain Q,
when the point x approaches a smooth boundary, X € 0(2.

Also, consider another weak form of (2.5) by supposing the vector functions to be the gradients
of an arbitrary function u(y) in ©, chosen in such a way that they have constant values:

u.(y)=u,(x), for k=123 (3.10)

Then the weak form of (2.5) will be written as:

[us o0y) + 270" o y) o ()d2 +u, (x)=0 (3.11)
Q
By applying further the divergence theorem, then (3.11) takes the form:
j D" (%, y)u, (X)dS + j AU (X, Y)U, (X)d2+u, (x)=0 (3.12)
00 Q

Moreover, the following property exists:

[ ), GOus 06 y)AS = [, (v)u, (u; (x,y)dS

(3.13)
= [u, (U’ (¢, y)dS — [u, (u (x, y)dS =0
By adding (3.12) and (3.13) then one has:
[0 y)u; Ggu, 06 y)dS = [, (y)u, Ju’ (x,y)dS
00 0Q
(3.14)

+ j @ (x,y)u} (X)dS + j A" (% Y)U, (X)d2+u, (x)=0

which takes finally the form:

[m )u; (U 06 y)AS + e, RuGdu} (x y)ds
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(3.15)
+ _[}t'u*(x, y)u, (x)d2+u, (x)=0
oQ

4. Non-linear Singular Integral Equations for 4-D Hydraulic Fracturing

The porous medium equation (2.1) will be also written in another form, in order a singular
integral equations representation to be applicable:

vzpz—vm[ A ] vp + 2L P 4.1)

o, A ot

By applying the Green Element Method, then (4.1) reduces to the solution of a non-linear
singular integral equation:

In(r —r,)] op
——p(r) j( —n—ln(r—n)a—anS+

(4.2)
B 1 0p
+_Uln(r r)[ VinAe Vp+ e }d!) 0
where:
A=, (43)

In order the non-linear singular integral equation (4.2) to be numerically evaluated, then the
Non-linear Singular Integral Operators Method (N.S.1.O.M.) will be used. Hence, the non-linear
singular integral equation (4.2) is approximated by the formula:

J

0

——p(r)+2{

=1

( alin(r-r)] In(r —r,) p]dsﬂj( VinAe Vp+1gpjd_(2}

on

(4.4
in which M denotes the total number of elements.

Beyond the above, we introduce the following functions describing the pressure at any point in
an element, in terms of the nodal pressures:

P Y)=N; (X, y)p; (4.5)

By replacing (4.5) then (4.4) takes the form:
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- e e e 1 8pl HE
DI Ajp;+Biq; —Ci InA;p, +Df — =0, i,j,1=1234  (46)
e=1 /1 6'[
where:
e OlIn(r—r 0
A = IMQJdS ~8 (4.7)
o on 27
Bi=— j In(r —r,)£2,dS (4.8)
00
N, ON.
Ci = .”In(r—r){ 6: + 8yj a;y'}dﬂ (4.9)
X
DS = jjln(r r)N;N,d2 (4.10)

5. Heterogeneous Reservoirs Well Testings Applications

The previous mentioned theory will be applied to the determination of a well testing, which will
be checked in an heterogeneous reservoir with a permeability varying from 10 mD to 300 mD
(ImDarcy ~ 10 m? = 1(um)?).

Thus, by using the Non-linear Singular Integral Operators Method (N.S.1.0.M.) as described by
the previous paragraphs, then the computation of the pressure response from the well test
conducted in the above heterogeneous reservoir will become possible. Firstly, the pressures were
computed in variation with the time. So, Table 1 shows the pressure response with respect to the
time.

Furthermore, the pressure derivatives were computed with respect to the time, as shown in
Table 2. Such derivatives are very much important of the well testings interpretation as these are
some distinct shapes and especially the characteristics of certain reservoir features.

The computational results of the pressures and the pressure derivatives are compared to the
analytical solutions of the same well testing problem, if the reservoir was homogeneous with
permeability equal to 50 mD. Hence, the analytical results are shown in Table 1 for the pressures
and in Table 2 for the pressure derivatives, correspondingly. From the above Tables it can be seen
that there is very small difference between the computational results and the analytical solutions for
both the pressures and the pressure derivatives. On the other hand, the above mentioned small
difference can be explained because of the diffusive nature of the pressure transport mechanism.
Finally same results are shown, correspondingly in Figures 4 and 5, and in three-dimensional form
in Figures 4a and 5a.

Table 1

Time Pressure (psi) Pressure (psi)
(hours) S.1.O.M. Analytical
0.002 7.003 7.022
0.009 10.002 10.013
0.015 12.002 12.031
0.030 12.504 12.523
0.040 13.003 13.014
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Pressure (psi)

0.070 13.503 13.502
0.100 14.002 14.033
0.250 14.501 14.521
0.400 15.004 15.032
1.000 15.502 15.514
2.000 16.004 16.023
10.00 17.002 17.022
30.00 17.504 17.524
80.00 18.001 18.042
100.00 19.003 19.032
200.00 20.000 20.030
400.00 20.000 20.020
600.00 20.000 20.010
1000.00 20.000 20.000
Table 2
Time Pressure Derivative (psi) Pressure Derivative (psi)
(hours) S.1.O.M. Analytical
0.002 1.504 2.002
0.009 2.002 2.003
0.015 2.001 2.003
0.030 2.002 2.002
0.040 2.003 2.002
0.070 2.004 2.003
0.100 2.002 2.004
0.250 2.001 2.002
0.400 2.003 2.003
1.000 2.002 2.002
2.000 2.004 2.003
10.00 2.001 2.002
30.00 2.003 2.003
80.00 2.002 2.003
100.00 1.001 1.301
200.00 0.600 0.800
400.00 0.250 0.260
600.00 0.060 0.060
1000.00 0.030 0.010
25,000

20,000 R
15,000 _,,/"""/
10,000 //*x.——»——" P
5,000 |
0,000 B e
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N N S

Time (hours)

Fig. 4 Pressure Response for Well Test in Heterogeneous Reservoir.
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Fig. 4a 3-D Distribution of Pressure Response for Well Test in Heterogeneous Reservoir.
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Fig. 5 Pressure Derivative for Well Test in Heterogeneous Reservoir.
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6. Conclusions

By the current investigation a mathematical model has been improved as an attempt to
determine the properties of the reservoir materials. Thus, the study of the movement of oil reserves
through porous media is very important for petroleum reservoir engineers. The above mentioned
problem was reduced to the solution of a non-linear singular integral equation, which was
numerically solved by using the Non-linear Singular Integral Operators Method (S.1.0.M.).

Additionally, several important properties of the porous medium equation, which is a Helmholtz
differential equation, were analyzed and investigated. Consequently, the fundamental solution of
the porous medium equation was proposed and studied. Moreover, some basic properties of the
fundamental solution were further investigated. These are very important in order the behavior of
the non-linear singular integral equation to be well understood.

An application was finally given for a well testing to be checked when a heterogeneous
petroleum reservoir is moving in a porous solid. The above problem was solved by using the Non-
linear Singular Integral Operators Method and thus the pressure response from the well test
conducted in the above heterogeneous oil reservoir, was computed. Both the pressures and the
pressure derivatives were computed and these values were compared to the analytical solutions of
the same well testing problem, if the reservoir was homogeneous with a mean permeability.

Over the last years, non-linear singular integral equation methods have been used with a big
success for the solution of several important engineering problems of structural analysis,
elastodynamics, hydraulics, fluid mechanics and aerodynamics. For the numerical solution of the
non-linear singular integral equations of the above problems, were used several aspects of the
Singular Integral Operators Method (S.1.0.M.). Thus, by the present research such methods were
extended for the solution of oil reserves problems in petroleum reservoir engineering.

The benefits of the new method in comparison to existing methods are the following:

1. The new method is based on the non-linear programming method, by using non-linear singular
equations. According to this theory the porous medium equation is reduced to the solution of a non-
linear singular integral equation which is then numerically solved by using a non-linear
programming method. Existing methods of well test analysis, are using too as a start the porous
medium equation, but as this is a complicated differential equation are giving only some analytical
solutions for very simple cases or numerical solutions for homogeneous reservoir materials..

2. The new method, as it is a complicated non-linear numerical method can give results for
heterogeneous porous media (which of course are the solids in reality) and not only for
homogeneous solids asare giving the analytical or numerical existing methods. Hence, the
estimation of the properties and the future petroleum production from a new oil reservoir could be
done exactly, and not estimated as by the existing methods.

From the above two points it can be understood the evidence of the applicability of the new
method, as it is based on non-linear software. Also its novelty, as it is based on the theory of non-
linear singular integral equations.
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