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Abstract 

By using a method of singular integral equations, then the free surface profile of potential flow is 

calculated in open-channel transitions. In these free surface hydraulics applications the analysis of 

fluid motion is too complicated, as both the subcritical and supercritical flows are presented 

simultaneously. For the numerical evaluation of the singular integral equations are used both 

constant and linear elements of the Singular Integral Operators Method (S.I.O.M.). An application 

is finally given to the determination of the free-surface profile in a special open – channel transition  

and comparing the numerical results of the SIOM with corresponding results by finite differences.  
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1. Introduction 

The study of open-channel transitions belongs to a major field of hydraulics engineering and 

fluid mechanics applications. Thus, contractions and expansions of flow belong to a very important 

chapter of open-channel hydraulics. 

Open-channel transitions are used in many hydraulic structures, such as in sluice gates, 

spillways, steep chutes and culverts. The fluid motion analysis in such hydraulics applications are 

very complicated, as both the subcritical and supercritical flows are present simultaneously. 

 In the past the two-dimensional St.Venant equations based on hydrostatic pressure distribution 

and shallow water theory have been used with success in order to describe open-channel 

transitions. The above equations are non-linear first-order hyperbolic partial differential equations 

and are evaluated only by numerical methods. Some important studies on open-channel transitions 

were firstly published by A.T.Ippen and J.H.Dawson [1] and A.T.Ippen and D.R.F.Harleman [2], 

[3]. 

 A few years later J.A.Liggett and S.U.Vasudev [4], M.Pandolfi [5], F.Villegas [6], R.Rajar and 

M.Cetina [7] and O.F.Jimenez and M.H.Chaudhry [8] used several numerical methods for the 

computation of supercritical flows in open-channels. Some of the above computational results are 

in good agreement with the corresponding experimental applications. 

 Furthermore, R.J.Fennema and M.H.Chaudhry [9] and S.M.Bhallamudi and M.H.Chaudhry 

[10] used finite differences for the numerical evaluation of the two-dimensional St.Venant 

equations in order to simulate free-surface flows. Their computational method was used for the 

determination of the free-surface profile in open-channel transitions. They made efforts in order to 

improve the numerical solution in open-channel hydraulics and especially where the flow 

phenomenon occurs in different length scales, in different regions of the flow domain. 

On the other hand, J.F.Thompson et al. [11] and R.G.Hindman et al. [12] in order to generate 

the motion of the dynamic grid system took the time derivative of the elliptic governing differential 

equations, of the coordinate mapping in order to solve the two-dimensional time-dependent Euler 

equations. 

 Beyond the above, H.A.Dwyer et al. [13] proposed adaptive grid methods for the solution of 

problems in open-channel hydraulics and heat transfer. Also, M.M.Rai and D.A.Anderson [14] 

studied some applications of adaptive grids to free-surface flow problems with asymptotic 

solutions. According to them, grid locations are directly calculated from the grid speed equation.
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For their method the two-dimensional St.Venant equations describing flows in open-channel 

transitions are solved. 

 Recently, M.H.Chaudhry [15] and M.Rahman and M.H.Chaudhry [16] used MacCormack 

second-order accurate explicit predictor-corrector scheme in order to solve the two-dimensional 

depth averaged shallow water equations for the numerical simulation of the supercritical free-

surface flows in open-channel transitions. For their computational method they used an adaptive 

grid system in order to have a resolution of the changes of the flow variables both for subcritical 

and supercritical flows. 

Over the past years E.G.Ladopoulos [17] – [22] and E.G.Ladopoulos and V.A.Zisis [23], [24] 

introduced and investigated linear and non-linear singular integral equations methods for the 

solution of fluid mechanics and hydraulics problems. In the present research these methods will be 

extended to the solution of open-channel transitions flows. 

Hence, the Singular Integral Operators Method (S.I.O.M.) [22], [25]-[32] is applied to the 

determination of the free-surface profile in open-channel transitions, by using the Laplacean 

equation of potential flow. For the numerical evaluation of the singular integral equations are used 

both constant and linear elements. An application is finally given to the determination of the free-

surface profile in open-channel transitions. 

 

 

2. Potential Flow Theory for Open-Channel Transitions 

 

Let an homogeneous, incompressible and inviscid fluid, which flows through an open-channel 

transition. As the flow is irrotational, then for the stream function  f, with ff ,  is valid: [22] 

 

     x f = 0           (2.1) 

 

Moreover, because of the conservation of mass for an incompressible fluid, then one has: 

 

      f = 0           (2.2) 

 

By using (2.1) and (2.2.) one obtains the equation of  Laplace which is the governing equation 

in the domain Ω: 

 

  
2
 f =  0           (2.3) 

 

    

The boundary conditions corresponding to the flow for open-channel transitions are: 

 

a. Essential conditions of the type:  f=Q on the axis of symmetry          

                                                                 of the transition                                                            (2.4)                                                                      

                                   and  f = Q on the boundary wall 

                                        where Q is the flow discharge. 

 

b. Natural conditions of the next type: 

                                           
n

f
v




                                     (2.5) 

in which  v  denotes the velocity and  n  the unit normal from the free surface. (Fig. 1) 
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Fig. 1 Boundary Conditions for Open-Channel Transitions 

 

 Thus, with a known flow rate Q and known velocities upstream and downstream the transition 

under study, then the remaining velocities on the boundary of the transition and in internal points 

can be calculated.  

 

 Furthermore, the free surface elevations can be determined in every boundary or internal point 

of the transition.  

 

3.  Potential Flow Analysis by Singular Integral Equations 

 Consider a weighting function  f* , so that it has continuous first derivatives. Thus the function  

f*  produces the following weighted residual statement:  

 

                        









2 1

*
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 

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f
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                    (3.1) 

 

in which by (-) are meant average values and  Γ1,  Γ2  are the boundaries where the essential and the 

natural conditions are affected, respectively.  

     

Furthermore, integrating by parts the left hand side of (3.1) one has: 
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By integrating again the left hand side of (3.2) we obtain: 
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       (3.3) 

 

In order to find a solution satisfying the Laplace equation, then the governing equation is: 

 

       2
f* + Δi = 0           (3.4) 

 

where  Δi  is the Dirac delta function. 
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    The solution of (3.4) is called the fundamental solution and has the property such that: 

    

                      

Ω

i

Ω

i fdΩffdΩff *2*2 )(           (3.5) 

 

where if  denotes the value of the unknown function at the point  "i"  where a concentrated load is 

acting. 

 

  Hence, if (3.4) is satisfied by the fundamental solution  then follows: 

 

                           

Ω

ifdΩff )( *2
                     (3.6) 

  

 By using (3.6), then eqn (3.3.) takes the form: 

 

       

1 2 12

**
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f
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f
fd
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f
ff i                    (3.7) 

Beyond the above, by taking the point "i" on the boundary, then the term  fi  in (3.7) must be 

multiplied by 1/2 for a smooth boundary. On the other hand, if the boundary is not  smooth at the 

point "i" then the number 1/2 must be replaced by a constant which can be determined from 

constant potential considerations.  

 

Then (3.7) takes the form: 

 

                                   


 










df

n

f
d

n

f
ffc ii

*

                                  (3.8) 

where  Γ = Γ1+Γ2  and has been assumed that  f  =f  on  Γ1 and vv
n

f





 on Γ2.      

In addition, the constant  ci  can be determined by the relation:  

 

          
π2


ic                              (3.9) 

 

in which  Θ  denotes the internal angle of the corner in rad. 

 

(a)  Constant Elements 
 

In order (3.8) to be numerically evaluated by using constant elements, then the above equation 

may be written as:  

 

                                              
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

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Also, (3.10) may be further written as: 
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                  
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where:  Aij = Aij
*    

,       when  ij 

  Aij = Aij
* 
+ ci   ,  when i=j                                                                      (3.12) 

 

Thus, (3.11) takes the form:     

 

                                                           




n

j

j

ij

n

j

jij
n

f
BfA

11

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                  (3.13) 

 

or in matrix form can be written as: 

                    Α f = B v                                 (3.14) 

 

On the other hand, by reordering the above equation so that all the unknowns are on the left 

hand side, then one has: 

                    C X = D                   (3.15) 

 

in which  X  denotes the vector of unknowns  f  and  v.  

 

Thus, once the values of  f and v on the whole boundary are known, then  f can be calculated at 

any interior point: 
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(b)  Linear Elements 
 

  In order (3.8) to be numerically evaluated by using linear elements, then the above equation 

may be written as: 
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In this case, in contrary to eqn (3.10), the variables  fj  and 
n

f j




 cannot be taken out of the integral 

as they vary linearly within the  element.  

 

Hence, by using linear elements then (3.17) can be further written as:  

 

                                                     
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
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By the same way, as for (3.13), the above equation takes the form: 
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and in matrix form:  

                         Α f = B v                     (3.20) 

    

Finally, by using either the constant elements or the linear elements, then the velocities  v = 

f/n  are computed through the open-channel transition.  

     

Also, the free surface elevations  y, are further computed  by the formula:  

 

                        y =
vd

Q


                       (3.21) 

 

with  d  the width of the transition, and thus the free-surface profile is fully determined.  

 

4.  Application to the determination of the free-surface profile of an expansion 

As an application of the previous mentioned theory, the free-surface profile will be determined 

in a channel expansion, with inlet conditions of velocity sec/167.10 mu  , water depth 

mh 06.00  , which corresponds to a Froude number 521.10 F . 

 

Furthermore, the outlet conditions of the channel expansion are: velocity  sec/222.0 mu  , 

water depth  mh 07.0 , corresponding to a Froude number 268.00 F . The width of the inlet 

channel is  0.10 m, the width of the outlet channel  0.45 m, and the length of the expansion 

mL 83.1  (see: Figure 2). Also, a steady flow of constant flow discharge sec/007.0 3mQ   is 

assumed. 

 
Fig. 2  Channel Expansion. 

 

 

The same problem has been previously solved by S. M. Bhallamudi and  M. H. Chaudhry [10]  

by using a uniformly distributed grid of steady flow by applying a numerical method of finite 

differences. Furthermore, same problem was solved by M.Rahman and M.H.Chaudhry  [16]  by 

using an adaptive grid system. Thus a comparison will be made between the results of the Singular 

Integral Operators Method (S.I.O.M.) and the two different methods of finite differences, the 

uniformly distributed grid and the adaptive grid.  
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This problem has been solved by using both constant and linear elements. Thus, Figure 3 shows 

the distribution of water depth along the channel centerline for the channel expansion of Fig. 2.  

Also, Figure 3a  shows the same distribution in 3-dimensional form. 

  

    

 
Fig. 3  Distribution of Water Depth along the Channel Centerline 

 

 

 

 

 
Fig. 3a 3-D  Distribution of Water Depth along the Channel Centerline 

 

 

 

As it can be seen from Figures 3 and 3a there is a small disagreement between the results of the 

constant and linear elements of the S.I.O.M. Furthermore, Figure 4 shows the distribution of water 

depth along the channel boundary for the channel expansion of Fig. 2. Also, Figure 4a  shows the 

same distribution in 3-dimensional form. 
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Fig. 4 Distribution of Water Depth along the Channel Boundary. 

 

 

 

 

 
Fig. 4a  3-D Distribution of Water Depth along the Channel Boundary 

 

 

Finally, as follows from Figures 3, 3a, 4 and 4a the results by using the S.I.O.M. (especially the 

linear elements) are in fair agreement with the corresponding results by using the two different 

methods of finite differences, the uniformly distributed grid [10] and the adaptive grid system [16].  

 

5.  Conclusions 

The Singular Integral Operators Method (S.I.O.M.) was applied to the determination of the free-

surface profile of potential flow in open-channel transitions. The study of transitions is very 

important in free-surface hydraulics, as these are used in many hydraulic structures, like sluice 

gates, spillways, steep chutes and culverts. As the flow in open-channel transitions contains both 

the subcritical and the supercritical flows, the analysis becomes too complicated. Thus in the past 

several numerical methods have been used in order to calculate the free-surface profile in open-

channel transitions. The potential flow model which was presented in this research was found to be 

very effective to produce good solutions both for subcritical and supercritical flows. 
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 The governing equation for solving potential flow problems is the equation of Laplace.  By 

using therefore the Laplacean and choosing the proper boundary conditions, then the unsteady flow 

in open-channel transitions is calculated by using a numerical method based on the singular integral 

equations. For the numerical evaluation of the singular integral equations were used both constant 

and linear elements. An application was given to the determination of the free-surface profile in a 

special open-channel transition and comparing the numerical results with corresponding results by 

finite differences. 

 Thus the proposed method by using the Laplacean for solving potential flow problems can be 

applied in many other hydraulic fields of open channel flows. In future special attention should be 

given to the research and application of singular integral equations methods to the solution of 

several important hydraulic problems of open channel flows. 
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