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Abstract 

For the determination of the properties of the reservoir materials, when petroleum reserves are 

moving through porous media, a leading technology is further studied. This problem is very much 

important for petroleum reservoir engineering and the major petroleum industry and especially in 

hydraulic fracturing. Thus, hydraulic fracturing is used to increase the rate at which fluids, such as 

petroleum, water, or natural gas can be recovered from subterranean natural reservoirs. Reserves 

are typically porous sandstones, limestones or dolomite rocks, but also include "unconventional 

reservoirs" such as shale rock or coal beds. Consequently, the above mentioned problem is reduced 

to the solution of a non-linear singular integral equation, which is numerically evaluated by using 

the Non-linear Singular Integral Operators Method (N.S.I.O.M.). In addition, several properties are 

analyzed and investigated for the porous medium equation, defined as a Helmholtz differential 

equation. An application is finally given for a well testing to be checked when a heterogeneous 

petroleum reservoir is moving in a porous solid. Consequently, by using the S.I.O.M., then the 

pressure response from the well test conducted in the above heterogeneous petroleum reserves, is 

numerically approximated and investigated.  

    
Key Word and Phrases 
Non-linear Singular Integral Operators Method (N.S.I.O.M.), 4-D Porous Medium Analysis, 
Hydraulic Fracturing, Non-linear Singular Integral Equations, Petroleum Reserves, Multiphase 
Flows, Helmholtz Differential Equation.  

 

1. Introduction 

Hydraulic fracturing is a well-stimulation method in which rock is fractured by a hydraulically 

pressurized liquid made of water, sand, and chemicals. A high-pressure fluid (usually chemicals 

and sand suspended in water) is injected into a wellbore to create cracks in the deep-rock 

formations through which natural gas and petroleum will flow more freely. When the hydraulic 

pressure is removed from the well, small grains of hydraulic fracturing proppants (either sand or 

aluminium oxide) hold the fractures open. Consequently, the hydraulic fracture is formed by 

pumping fracturing fluid into a wellbore at a rate sufficient to increase pressure at the target depth 

in order to exceed that of the fracture pressure gradient of the rock. 

Thus, hydraulic fracturing is used to increase the rate at which fluids, such as petroleum, water, 

or natural gas can be recovered from subterranean natural reservoirs. Reserves are typically porous 

sandstones, limestones or dolomite rocks, but also include "unconventional reservoirs" such as 

shale rock or coal beds. Hydraulic fracturing enables the extraction of natural gas and petroleum 

from rock formations deep below the earth's surface (generally 2,000–6,000 m), which is greatly 

below typical groundwater reservoir levels. At such depth, there may be insufficient permeability 

or reservoir pressure to allow natural gas and petroleum to flow from the rock into the wellbore at 

high economic return. 

Typically, 90% of the hydraulically pressurized fluid is water and 9.5% is sand with chemical 

additives accounting to about 0.5%. Moreover, proppants are solid material, typically treated sand 

or man-made ceramic materials, designed to keep an induced hydraulic fracture open, during or 

following a fracturing treatment. 

http://en.wikipedia.org/wiki/Sandstone
http://en.wikipedia.org/wiki/Limestone
http://en.wikipedia.org/wiki/Dolomite
http://en.wikipedia.org/wiki/Shale
http://en.wikipedia.org/wiki/Coal
http://en.wikipedia.org/wiki/Well-stimulation
http://en.wikipedia.org/wiki/Hydraulic
http://en.wikipedia.org/wiki/Wellbore
http://en.wikipedia.org/wiki/Natural_gas
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Hydraulic_fracturing_proppants
http://en.wikipedia.org/wiki/Fracturing_fluid
http://en.wikipedia.org/wiki/Sandstone
http://en.wikipedia.org/wiki/Limestone
http://en.wikipedia.org/wiki/Dolomite
http://en.wikipedia.org/wiki/Shale
http://en.wikipedia.org/wiki/Coal
http://en.wikipedia.org/wiki/Permeability_%28earth_sciences%29
http://en.wikipedia.org/wiki/Hydraulic
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It is added to the fracturing fluid which may vary in composition depending on the type of 

fracturing used, and can be gel, foam or slickwater-based. Moreover, there may be unconventional 

fracking fluids. Fluids make tradeoffs in such material properties as viscosity, where more viscous 

fluids can carry more concentrated proppant; the energy or pressure demands to maintain a certain 

flux pump rate (flow velocity) that will conduct the proppant appropriately; pH, various rheological 

factors, among others. Hence, sand is used to “prop open” fractures in shale rock and allow oil and 

gas to flow freely. The goal of the current investigation is to propose an “innovative” technology to 

reduce the amount of sand required to drill and maintain productive wells. So, by the present 

research a leading technology will be further improved in order to minimize the quantity of sand 

which is used for the hydraulic fracturing solution when injected downhole. The proposed 

groundbreaking method will have the potential to improve the environment for affected 

communities. Drilling new wells requires thousands of truck trips through these communities, 

which snarls traffic and creates noise, dust and exhaust fumes. Trucks carrying sand account for a 

large percentage of the truck traffic to drilling fields. 

Weight limits on community roadways prevent sand delivery trucks from hauling maximum 

capacity loads. Thus, in order to improve the health and safety of these communities, a 

sophisticated technology will be proposed in order to reduce the amount of sand required for 

hydraulic fracturing of petroleum and gas wells. By using sand more efficiently will eliminate 

thousands of truck trips every year, as sand is combined with hydraulic fracturing fluid and injected 

as a slurry into horizontal wells. So, the fluid fractures the shale rock and the sand fills the fractures 

with a strong but porous material that allows oil and gas to flow freely from the fractured rock. The 

proposed new method will keep sand suspended in solution so that it can efficiently fill each 

fracture would reduce the amount of sand and trucks required to maximize petroleum and gas 

recovery from wells.  

Hence, in order to minimize the requested sand for the hydraulic fracturing model, the Non-

linear Singular Integral Operators Method (N.S.I.O.M.) for porous medium analysis will be used. 

By using the above method then the viscosity of the fracturing fluid will be modified. Hence, the 

study of the movement of petroleum reserves through porous media is very much important 

problem on petroleum reservoir engineering. By applying therefore a well testing analysis, then a 

history matching process takes place for the determination of the properties of the reservoir 

materials. The movement of petroleum & gas  reserves through porous media, produces both 

single-phase and multiphase flows. In addition, if a well test is conducted, then the well is 

subjected to a change of the flow rate and the pressure response can be further measured. For the 

determination of several oil reservoir parameters, such as permeability, then numerical calculations 

should be used, as analytical solutions in most cases are not possible to be derived.  

Over the last years several non-linear singular integral equations methods were used 

successfully by E.G. Ladopoulos [1] - [38] for the solution of many applied problems of petroleum 

engineering. Hence, by the present investigation, the non-linear singular integral equations will be 

proposed in order to determine the properties of the reservoir materials, when petroleum reserves 

are moving through porous solids. 

By using therefore, the Non-linear Singular Integral Operators Method (N.S.I.O.M.), then the 

pressure response from the well test conducted in a heterogeneous reservoir will be computed. In 

addition, some properties of the porous medium equation, which is a Helmholtz differential 

equation are proposed and investigated. Thus, basic properties of the fundamental solution will be 

analyzed and investigated. Consequently, the non-linear singular integral equation methods which 

were used with big success for the solution of several oil engineering problems, are further 

extended by the present study for the solution of hydraulic fracturing problems. In such case the 

non-linear singular integral equations are used for the solution of one of the most important and 

interesting problems for petroleum engineers. 

 

2.  4-D Well Test Analysis with Hydraulic Fracturing  

Oil well test analysis is a kind of an important history matching process for the determination of 

the properties of reservoir materials. Thus, during the movement of oil reservoir through porous 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Flow_velocity
http://en.wikipedia.org/wiki/PH
http://en.wikipedia.org/wiki/Rheology
http://en.wikipedia.org/wiki/Rheology
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media, then both single-phase and multiphase flow occurs. Moreover, when a petroleum well test is 

conducted then the well is subjected to a change of its flow rate and the resulting pressure response 

is possible to be measured. This pressure is further compared to analytical or numerical models in 

order to estimate reservoir parameters such as permeability. 

 

In general, a petroleum reservoir well test in a single-phase reservoir is calculated by using the 

porous medium equation: 

 

                                    
t

p
cp t



 )(




           (2.1) 

 

in which  λ  denotes the permeability,   the porosity, ξ  the viscosity,  p the pressure of the 

reservoir,  t  the time and ct  the compressibility. 

 

By replacing variables as follows: 

 

                                      pu 2/1)(



           (2.2) 

then (2.1) may be written as: 
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Hence, (2.3) is a Helmholtz differential equation. 

 

Furthermore, consider by u
*
(x,y) the fundamental solution of any point  y, because of the source 

point x. Then, the fundamental solution can be given by the following equation:  

 

                  
0),(),(),( **2  yxyxyx  uu                    (2.5a) 

 

which may be further written as: 

 

                                                         0),(),(),( **

,  yxyxyx  uu ii                                  (2.5b) 

 

Thus, (2.5) is the Helmholtz potential equation governing the fundamental solution. 

 

Beyond the above, consider by u
* 

the fundamental solution chosen so that to enforce the 

Helmholtz equation in terms of the function  u, in a weak form. Then the weak form of Helmholtz 

equation will be written as following: 

 

 

                                                              0)( *2  

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in the solution domain Ω. 

    

Besides, by applying the divergence theorem once in (3.6), one obtains a symmetric weak form: 
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in which n denotes the outward normal vector of the surface  S. 

    

So, in the symmetric weak form the function  u and the fundamental solution u
*
 are only 

required to be first - order differentiable. By applying further the divergence theorem twice in (2.6) 

one  has: 
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Thus, (2.8) is the asymmetric weak form and the fundamental solution u
* 

 is required to be 

second - order differentiable. On the other hand, u is not required to be differentiable in the domain 

Ω.   

 

By combining (2.5) and (2.8), then one has: 
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which can be further written as: 
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where  q(y) denotes the potential gradient along the outward normal direction of the boundary 

surface: 
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and the kernel function: 
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By differentiating (2.10) with respect to xk  we obtain the integral equation for potential 

gradients  u,k(x) by the following formula: 
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3. Fundamental Solution’s Basic Properties  
We rewrite the weak form of (2.5) governing the fundamental solution, as follows: 
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in which  c denotes a constant, considering as the test function. 

 

Beyond the above, (3.1) can be written as: 
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Moreover, (3.2) takes the form: 
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By considering further an arbitrary function u(x) in Ω as the test function, then the weak form of 

(2.5) will be written as: 
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Finally, (3.5) takes the form: 
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If x approaches the smooth boundary )( x , then the first term in (3.6) may be written as:    
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in the sense of a Cauchy Principal Value (CPV) integral. 

 

For the understanding of the physical meaning of (3.7), we rewrite (3.3) and (3.6) as:  
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By (3.8) follows that only a half of the source function at point x is applied to the domain Ω,  

when the point x approaches a smooth boundary, x . 

 

Moreover, consider another weak form of (2.5) by supposing the vector functions to be the 

gradients of an arbitrary function u(y) in Ω, chosen in such a way that they have constant values:  

  

                         )()( ,, xy kk uu  ,     for  k=1,2,3                                                (3.10) 

 

Then the weak form of (2.5) will be written as:   
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By applying further the divergence theorem, then (3.11) takes the form:      
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Beyond the above, the following property exists: 
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By adding (3.12) and (3.13) then we have: 
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4.  Hydraulic Fracturing by Non-linear Singular Integral Equations  
 

The porous medium equation (2.1) will be also written in another form, in order a singular 

integral equations representation to be applicable: 
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By applying the Green Element Method, then (4.1) reduces to the solution of a non-linear 

singular integral equation: 

 

 

                                     
 



























dS

n

p
rr

n

rr
prp i

i
i )ln(

)ln(
)(

2
    

                                                                                                                                                       (4.2) 

 

                                              0
1

ln)ln( 











  





d
t

p
prr i  

where: 

 

                                                                         tc



                                                             (4.3) 

 

In order the non-linear singular integral equation (4.2) to be numerically solved, then the Non-

linear Singular Integral Operators Method (N.S.I.O.M.) will be used. Thus, the non-linear singular 

integral equation (4.2) is approximated by the formula: 
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in which M denotes the total number of elements. 

 

Furthermore, we introduce the following functions describing the pressure at any point in an 

element, in terms of the nodal pressures: 
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By replacing (4.5) then (4.4) takes the form: 
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5.  Applications for Heterogeneous Reservoirs Well Testings  

 

The previous mentioned theory will be applied to the determination of a well testing, which will 

be checked in an heterogeneous reservoir with a permeability varying from 10 mD to 300 mD 

(1mDarcy  10
-12 

m
2 
= 1(μm)

2
).       

   

Thus, by using the Non-linear Singular Integral Operators Method (N.S.I.O.M.) as described by 

the previous paragraphs, then the computation of the pressure response from the well test 

conducted in the above heterogeneous reservoir will become possible. Firstly, the pressures were 

computed in variation with the time. So, Table 1 shows the pressure response with respect to the 

time. 

 

Furthermore, the pressure derivatives were computed with respect to the time, as shown in 

Table 2. Such derivatives are very much important of the well testings interpretation as these are 

some distinct shapes and especially the characteristics of certain reservoir features. 

 

The computational results of the pressures and the pressure derivatives are compared to the 

analytical solutions of the same well testing problem, if the reservoir was homogeneous with 

permeability equal to 50 mD. Hence, the analytical results are shown in Table 1 for the pressures 

and in Table 2 for the pressure derivatives, correspondingly. From the above Tables it can be seen 

that there is very small difference between the computational results and the analytical solutions for 

both the pressures and the pressure derivatives. On the contrary, the above mentioned small 

difference can be explained because of the diffusive nature of the pressure transport mechanism. 

Finally same results are shown, correspondingly in Figures 4 and 5, and in three-dimensional form 

in Figures 4a and 5a. 

 

 

Table 1 

 

Time 

(hours) 

Pressure (psi) 

S.I.O.M. 

Pressure (psi) 

Analytical 

0.002 7.003 7.022 

0.009 10.002 10.013 

0.015 12.002 12.031 

0.030 12.504 12.523 

0.040 13.003 13.014 

0.070 13.503 13.502 

0.100 14.002 14.033 

0.250 14.501 14.521 
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0.400 15.004 15.032 

1.000 15.502 15.514 

2.000 16.004 16.023 

10.00 17.002 17.022 

30.00 17.504 17.524 

80.00 18.001 18.042 

100.00 19.003 19.032 

200.00 20.000 20.030 

400.00 20.000 20.020 

600.00 20.000 20.010 

1000.00 20.000 20.000 

 

 

Table 2 

 

Time 

(hours) 

Pressure Derivative (psi) 

S.I.O.M. 

Pressure Derivative (psi) 

Analytical 

0.002 1.504 2.002 

0.009 2.002 2.003 

0.015 2.001 2.003 

0.030 2.002 2.002 

0.040 2.003 2.002 

0.070 2.004 2.003 

0.100 2.002 2.004 

0.250 2.001 2.002 

0.400 2.003 2.003 

1.000 2.002 2.002 

2.000 2.004 2.003 

10.00 2.001 2.002 

30.00 2.003 2.003 

80.00 2.002 2.003 

100.00 1.001 1.301 

200.00 0.600 0.800 

400.00 0.250 0.260 

600.00 0.060 0.060 

1000.00 0.030 0.010 

 

 

 

 
 

Fig. 4 Pressure Response for Well Test in Heterogeneous Reservoir. 
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Fig. 4a 3-D Distribution of Pressure Response for Well Test in Heterogeneous Reservoir. 

 

 
Fig. 5 Pressure Derivative for Well Test in Heterogeneous Reservoir. 

 

 
Fig. 5a 3-D Distribution of Pressure Derivative for Well Test in Heterogeneous Reservoir. 
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6. Conclusions 
By the present investigation a new mathematical method has been improved as an attempt to 

determine the properties of the reservoir materials. hence, the study of the movement of oil & gas 

reserves through porous media is very important for oil reservoir engineers. The above mentioned 

problem was reduced to the solution of a non-linear singular integral equation, which was 

numerically calculated by using the Non-linear Singular Integral Operators Method (S.I.O.M.). 

Moreover, several important properties of the porous medium equation, which is a Helmholtz 

differential equation, were analyzed and investigated. Consequently, the fundamental solution of 

the porous medium equation was proposed and studied. Beyond the above, some basic properties of 

the fundamental solution were further investigated. These are very important in order the behavior 

of the non-linear singular integral equation to be well understood. 

An application was also given for a well testing to be checked when a heterogeneous petroleum 

reservoir is moving in a porous solid. The above problem was solved by using the Non-linear 

Singular Integral Operators Method and thus the pressure response from the well test conducted in 

the above heterogeneous petroleum reservoir, was computed. Both the pressures and the pressure 

derivatives were computed and these values were compared to the analytical solutions of the same 

well testing problem, if the reservoir was homogeneous with a mean permeability. 

Over the past years, non-linear singular integral equation methods have been used with a big 

success for the solution of several important engineering problems of structural analysis, 

elastodynamics, hydraulics, fluid mechanics and aerodynamics. For the numerical evaluation of the 

non-linear singular integral equations of the above problems, were used several aspects of the 

Singular Integral Operators Method (S.I.O.M.). Thus, by the current research such methods were 

extended for the solution of oil reserves problems in petroleum reservoir engineering.   

The benefits of the new technology in comparison to existing methods are the following: 

1. The new method is based on the non-linear programming method, by using non-linear singular 

equations. According to this theory the porous medium equation is reduced to the solution of a non-

linear singular integral equation which is then numerically approximated by using a non-linear 

programming method. Existing methods of well test analysis, are using too as a start the porous 

medium equation, but as this is a complicated differential equation are giving only some analytical 

solutions for very simple cases or numerical solutions for homogeneous reservoir materials.. 

2. The new method, as it is a complicated non-linear numerical method can give results for 

heterogeneous porous media (which of course are the solids in reality) and not only for 

homogeneous solids as are giving the analytical or numerical existing methods. So, the estimation 

of the properties and the future petroleum production from a new oil reservoir could be done 

exactly, and not estimated as by the existing methods. 

From the above two points it can be understood the evidence of the applicability of the new 

method, as it is based on non-linear software. Also its novelty, as it is based on the theory of non-

linear singular integral equations.  
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