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Abstract 
A new method is investigated by applying the Singular Integral Operators Method (S.I.O.M.).for 
the solution of the anisotropic elastic stress analysis, which defines the basic feature of the 
mechanical behavior of composite solids. So, the above ‘innovative” method depends on the 
existence and explicit definition of the fundamental solution to the governing partial differential 
equations. Consequently, after the determination of the fundamental solution, a real variable 
boundary integral formula is generated. In addition the construction of the solution for the 
composite solids problem is presented as is the derivation of the expression for the surface tractions 
necessary to maintain the fundamental solution in a bounded region. Several parameters, like 
intensity factors, incorporate stress kernels, geometry and crack size, may be evaluated by the 
elastic stress analysis of cracked structures. Hence, by using the S.I.O.M., then the anisotropic 
elastic stress of composite solids will be determined. 
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1. Introduction  
Many homogeneous solids like paper, textolite, plywood, delta wood, pine wood, metal 

systems, reinforced concrete and laminates are often anisotropic (or at least orthotropic from point 
to point) and find wide application in modern technology. Furthermore, all the composite materials 
have anisotropic behavior. Plates with artificially-made differences between the flexural rigidities 
for different directions may also be considered as anisotropic solids. Plates strengthened by 
stiffening ribs and corrugated plates may be regarded as anisotropic materials. If a crack or hole is 
presented and is not associated with a plane or elastic symmetry, then the problem must be treated 
as one of general anisotropy. 

During the past years, special effort has gone into studying stress fields in anisotropic solids, 
because numerous engineering materials under normal or loading conditions show different 
mechanical properties along certain preferred directions. Among them we shall mention the 
following authors, following classical lines: S.G.Lekhnitskii [1]-[5], G.N.Savin [6]-[10], 
M.O.Basheleishvili [11], [12], J.R.Willis [13], H.T.Rathod [14], S.Krenk [15], G.C.Sih and 
H.Liebowitz [16], G.C.Sih and M.K.Kassir [17] and G.C.Sih et al. [18]. 

On the contrary, by using an integral transform method obtained by I.N.Sneddon [19], [20] the 
governing partial differential equation of anisotropic elasticity is solved, while G.E.Tupholme [21], 
D.D.Ang and M.L.Williams [22], O.L.Bowie and C.E.Freese [23] have studied some fracture 
mechanics problems of orthotropic media. 

Singular integral equation methods for solving two- and three-dimensional problems of cracks 
and holes in anisotropic bodies have been introduced by F.J.Rizzo and D.J.Shippy [24], S.M.Vogel 
and F.J.Rizzo [25], M.D.Snyder and T.A.Cruse [26], [27], E.G.Ladopoulos [28], [29], K.S.Parihar 
and S.Sowdamini [30], T.Mura [31], C.Ouyang and Mei-Zi Lu [32], R.P.Gilbert et al. [33], 
R.P.Gilbert and M.Schneider [34], R.P.Gilbert and R.Magnanini [35] and U.Zastrow [36] - [38].
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Structural and engineer members are often loaded in ways that produce a three-dimensional 
stress state. Generally, although the loading may appear outwardly simple, a complex state of stress 
can exist inside the medium, particularly in the neighbourhood of the cracks and the holes, where 
the stresses can undergo sharp variations. 

In the neighborhood of cracks of irregular shapes or holes, the stress state is often triaxial in 
nature and the problem of predicting the surface of crack propagation is very difficult. 
Consequently, by the present research, all the methods which were applied to boundary value 
problems of homogeneous and piecewise homogeneous isotropic bodies, may be extended to 
anisotropic elastic bodies. This requires, a further elaboration of the theory of the various kinds of 
fundamental solutions for systems of elliptic equations with discontinuous coefficients and also an 
extension of the theory of many-dimensional singular integral equations to systems of equations 
having these fundamental solutions as their kernels. These problems, which present new 
difficulties, are of considerable interest and should be made the subject of future investigations. 

Thus, some parameters, such as intensity factors, incorporate stress levels, geometry and crack 
size, may be evaluated from the stress analysis of cracked structures. These parameters deduced 
from elastic fracture mechanics analysis can correlate crack growth rate in specimens and 
structures which see nominally - elastic loading. Elastic fracture mechanics analysis idealizes the 
physical crack or inclusion problem in three different ways : Firstly the crack plane is generally 
taken to be flat, secondly the crack is assumed to be sufficiently large that the local material 
microstructure can be modeled as a continuum and, thirdly inelastic crack tip effects such as 
plasticity are restricted to a sufficiently small volume that they can be neglected. The validity of 
these assumptions must be verified on the basis of the actual behavior of the cracked structure. 

In some problems such as planar structures containing through cracks and holes, the stress and 
strain fields ahead of the cracks and the hole, may be approximated as two dimensions. In order to 
form the three-dimensional anisotropic problem, the Somigliana identity has been used which 
provides a formal representation for the displacement of an interior point in the body in terms of 
integrals involving boundary data. 

By this theory it is possible to provide integral relations between boundary tractions and 
displacements, which in a well-posed boundary-value problem are not concurrently assigned over 
the entire surface. 

Hence, the Singular Integral Operators Method (S.I.O.M.) which was used very successfully for 
the solution of several engineering problems of fluid mechanics, hydraulics, aerodynamics, solid 
mechanics, potential flows and structural analysis, is further extended by the present investigation 
for the solution of composite elastic stress analysis problems.  
 

2. General Theory of Anisotropic Elastic Stress Analysis  
Let us express the stresses  zyx ),,,,,( xyzxyz    in terms of strains 

),,,,,( xyzxyzzyx    through a set of constants Cij,  which are called the moduli of elasticity: 

                                                                      (2.1) 
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On the other hand, in order to express the strains in terms of stresses, let us use another set of 36 
constants  aij (i, j = 1,2,…,6),  known as the coefficients of deformation: 
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                                                                           (2.2) 
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Consequently, by considering the case where the material is "transversely isotropic", which 
means, that it possesses an axis of elastic symmetry such that the material is isotropic in the planes 
normal to this axis, then the following formula is valid between the stresses and strains: 

                                                       (2.3) 
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where  z  is the direction of the elastic symmetry. 
 

The coefficients of deformation in (2.3) are expressed as: [1] 
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where  E1, G1  and  v1  are the Young's modulus, shear modulus, and Poisson's ratio, respectively, in 
the plane of isotropy and  E2, G2  and  v2  are the same quantities in the transverse direction. 
 

Furthermore, in order to express the stress components in terms of strains for a "transversely 
isotropic" material we obtain the following formula: 
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                         (2.5) 

in which the elastic moduli  Cij  may be expressed as following: [1],[2] 
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                                                                                                                                                      (2.6) 
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Beyond the above, in the case of isotropic material,  v1 = v2,  E1 = E2  and  G1 = G2  and so the 
elastic moduli  Cij  may be related to the Lamé coefficients  λ  and  μ  as: 
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The strain components in (2.5) are expressed by the formulas: 
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where  ux, uy  and  uz  are the components of displacements in cartesian coordinates. 
 

 
3. Fundamental Solutions of Composite Stress Analysis 

 
Let us consider a body in three-dimensional space, which has a bounding surface  L.  According 

to Betti's reciprocal theorem and by considering absence of body forces, we obtain: [24],[29] 

                                                                                      (3.1) 0d)(d)(  


RUtTURUtTu ijiiji

L

ijiiji

where  dR  is an element of surface area at  R,  which is a point on  L.  Also  Γ  is the boundary of 
the finite or infinite domain of space in coordinates  x1, x2, x3,  in which exist the anisotropic elastic 
body. This boundary  Γ  is a connected closed Lyapounov surface. 
 

In (3.1)  ui  and  ti  are the displacement and traction components,  Uij(x,y)  the displacement at 
point  x  in response to a concentrated unit body force acting in the  j  coordinate direction at point  
y,  and  Tij  the suitable boundary tractions. 
 

Furthermore, Betti's theorem (eq. (3.1)) results in Somigliana's identity [24]: 
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where the point dependence is explicitly indicated and  a  is the magnitude of the force 
components. 
 

The following two limiting formulas have to exist: 
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where  ε  is the radius of a sphere centre  y,  with the boundary  Γ,  and  uj(y)  the displacement at 
the origin corresponding to  ui  and  ti  on  L. 
 

In order to derive the formula of the fundamental solution, we adopt the method of 
decomposition into plane waves used in [39]. Hence, consider the function  g,  which is an arbitrary 
distribution and vanishes outside a finite sphere. 
 

The next formula is a solution of the differential equation: 
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where  Δy  denotes the Laplacean with respect to  yi. 
 

The following identity is easily seen to be: 
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From (3.5) and (3.7) we obtain the result: 

                                                 
yx

yxy 


2
                                                           (3.7a) 

 6



E.G. Ladopoulos 
 

Consequently, from (3.5), (3.6) and (3.7a) one has: 
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Beyond the above, consider the function  h(ζ,p)  which is given by the formula: 
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From (3.8), (3.10) and (3.11) one has: 
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By considering the case where: 
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then one obtains: 

                                                  )(),(   yyh                                                        (3.14) 

From (3.12), (3.13) and (3.14) we have the expression for the three-dimensional delta function: 
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So, from (3.15) we derive the fundamental solution for the displacements: 
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where the function  Wij  is given by: 
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Hence, from (3.16), (3.17) and (3.18) we obtain: 
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By using (3.7), then (3.19) takes the simpler form: 
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where  φ  is the angle between the vectors  x-y  and  ζ. 
 

From (3.20) we derive a simpler form, if the part of the integration over the unit hemispherical 
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shell of (3.20) involving the azimuthal angle, is carried out: 
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where  ds  is an element of arc length. 
 
Consequently, (3.21) gives the solution for the general case of three-dimensional elasticity. 

 
Beyond the above,  Pij(ζ)  in (3.21) is given by: 
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where the constants  Cijkl  are the elasticities,  Qij  is the characteristic matrix and the quantities  εimn  
and  detQ  are the alternating symbol and determinant of  Qij,  respectively. On the other hand, the 
suitable boundary tractions  Tij  are given by the formula: 
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in which  ni  are the components of the unit outward at the point  x  on  L.  Moreover, let us take a 
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So, from (3.23) and (3.24), eq. (3.25) takes the form: 
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Beyond the above, we introduce the expressions: 
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The insertion of (3.27), (3.28) and (3.29) into (3.26) results the displacements: 
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Thus, (3.30) gives the solution for the general case of three-dimensional elasticity, while the 

boundary tractions  Pij  are given by (3.22). 
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4. Three-dimensional Singular Integral Operators Method 
 
In order to evaluate numerically the three-dimensional singular integral of (3.30), let us follow 

the next method. 
 
The following integral is a three-dimensional singular integral defined on a three-dimensional 

finite region  V,  containing the third-order pole  (x1,y1,z1),  whose boundary is a closed Lyapounov 
surface  S:  [40] - [42] 
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Thus, we introduce the following system of spherical coordinates: 
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                                   1

 (4.2)
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Then, from eq. (4.2) we obtain: 
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r
r
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By integrating (8.4.3) with respect to  θ  and  φ  and using the trapezoidal rule with abscissas  G, 

D,  then we obtain the formula: 
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in which: 
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and: 

                                                     
),(

d
),,(

),(),(
 

R

O

r
r

ru
g                                            (4.6) 

For the numerical evaluation of the integral in (8.4.6) we use the following numerical 
integration rule: 

                             
),(

0

d
),,(

 R

r
r

ru 



L

k
kk RuRuA

1

)],(ln[),,0(],,),([           (4.7) 

where  ρk  are the abscissas and  Ak  the weights for the integration interval [0,1]. 
 
 

5. Conclusions 
The Singular Integral Operators Method (S.I.O.M.) has been investigated for the determination 

of the anisotropic elastic stress components of composite solids. Consequently, by using the the 
anisotropic theory, then the mechanical behavior of the composite solids can be explained. Such 
composite materials have an increasing application in engineering, like the aerospace industry and 
they have also several possible fracture modes, such as fiber fracturing, crack bridging, matrix 
crazing and fiber-matrix debounding. 

In addition as it is easily seen for problems in which the nominal stress field is development 
upon the anisotropy of the solid it would be expected that the anisotropic stress intensity factor may 
be much different from the isotropic result. Moreover, the proposed method depends on the 
existence and explicit definition of a fundamental solution to the governing partial differential 
equations. 

The new formulas of three-dimensional elasticity in anisotropic bodies can be further reduced to 
the solution of elasticity problems in orthotropic solids. So, the current method was devoted to a 
basic description of a very specific numerical scheme, the vigorous foundation and comparison of 
some regularization algorithms and their application to the numerical solution of singular integral 
equations. Consequently, particular attention has been concentrated on the construction and 
verification of regularization algorithms effectible in elasticity.  
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