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Abstract

A large class of plasticity problems can be reduced to the solution of a system of multidimensional
singular integral equations. Consequently, it is of interest to evaluate numerically these systems of
integral equations of the respective boundary value problem, instead of the problem itself. These
numerical techniques discretize the domain of the problem under consideration into a number of
elements or cells. The governing equations of the problem are then approximated over the region
by functions which fully or partially satisfy the boundary conditions. By the current research the
following non-linear plasticity problems are investigated: Two-dimensional plasticity problems,
three-dimensional plasticity problems and three-dimensional thermoelastoplastic stress analysis.
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1. Introduction

The theory of multidimensional singular integral equations, with a wide field of applications in
mathematical physics and engineering mechanics, such as thermoelastoplasticity, viscoelasticity
and fracture mechanics theory, has developed comparatively slowly over a rather long period.
Recently however, interest has increased sharply.

In addition a large class of plasticity problems can be reduced to the solution of
multidimensional singular integral equations. So, should be evaluated numerically these singular
integral equations of the respective boundary value problem, instead of the problem itself. Such
numerical evaluation methods discretize the domain of the problem under consideration into a
number of elements or cells. Then, the governing equations of the problem are approximated over
the region by functions which fully or partially satisfy the boundary conditions.

Over the past years, some papers have been published on the application of the method of
formulation of plasticity problems, by using systems of singular integral equations. J.L.Swedlow
and T.A.Cruse [1], S.Mukherjee [2], A.Mendelson [3], H.D.Bui [4], and J.C.F.Telles and
C.A.Brebbia [5] have studied some plasticity problems by using the Boundary Integral Equation
Method (B.l.E.M.), while E.G.Ladopoulos [6] - [10] has introduced and investigated the Singular
Integral Operators Method (S.1.0.M.) for solving some basic plasticity problems.

On the other hand, many scientists have studied plasticity problems following theoretical or
numerical classical lines, like finite-elements, etc. Among them we shall mention the following
authors : O.C.Zienkiewicz et al. [11], G.C.Nayak and O.C.Zienkiewicz [12], W.F.Chen [13],
Y.Yamada et al. [14], P.V.Marcal and I.P.King [15], R.Hill [16], O.Hoffman and G.Sachs [17],
P.G.Hodge and G.N.White [18], W.T.Koiter [19], D.C.Drucker and W.Prager [20], W.Prager [21],
D.N.Allen and R.V.Southwell [22], W.Johnson and P.B.Mellor [23], W.D. Liam Finn [24], Z.Mroz
[25], J.N.Goodier and P.G.Hodge [26], J.H.Argyris [27], G.G.Pope [28], R.von Mises [29], J.Casey
and P.M.Naghdi [30] - [32], P.M.Naghdi and J.A.Trapp [33], P.V.Lade [34], P.J.Yoder and
W.D.lwan [35], J.H.Prevost [36], and P.K.Banerjee and A.S.Stipho [37].

The aim of the current research is to include an extensive generalization of the theory of plastic
flow, to study its mathematical character, to articulate a reciprocal theorem for quasi-linear
behaviour and to assemble the foregoing into an extended form of Somigliana’s identity, giving the
displacement rate in terms of the traction, where the displacement rate on the boundary involves
plastic strain rate.
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Complex stress plasticity problems are better formulated by using singular integral equation
methods, rather than domain techniques. A simple recursive relation is presented relating the
stresses to the initial elastic solution and the plastic strains.

By foundation is meant the proof of the convergence of approximate solutions to the exact, the
examination of the stability of solutions, an examination of their rate of convergence and the
determination of using a practical method of error estimation.

By the present study are investigated the following plasticity problems: Two-dimensional plastic
stress analysis of isotropic solids, three-dimensional plasticity of isotropic solids and three-
dimensional thermoelastoplastic stress analysis of isotropic solids.

2 Two-dimensional Plastic Stress Analysis of Isotropic Solids
Consider the expression between the total strain rate ¢, and the displacement rate i, :

g“:%@M+¢N) 2.1)

Beyond the above, the total strain rate is represented by the formula:
gy =85 +&] (2.2)

where ¢; and &7 are the elastic and plastic components of the strain rate tensor.

By applying Hooke's law to the elastic part of the strain rates, then the stress rates &, reduce to
the following form [1], [5], [8]:

2Gv

+1/.l.j’[)+m

&, =2G(i

y

iy .6, —2GE! 2.3)

i,j

where v is Poisson's ratio and G the shear modulus.

From (2.1), (2.2) and (2.3) the stress rate tensor is assumed to be represented by:

6, =2G(g, — 22 )+ 22 (e, - é0 ), (2.4)
1-2v
By inserting the plastic stress components &7 in (2.4), then one has:

. ) 2Gv . .
Gij =2G8i,j +m8115y—05 (25)
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in which:
P 0GP 2v.p5 26
o5 = & +—1 Zvé‘kk i ( ' )

as is easily seen from (2.4) and (2.5).

Consider further the equilibrium conditions in the interior of the body:
G, +&,=0 (2.7

inwhich g, are the body force rates per unit volume.

On the boundary of the body, the equilibrium conditions are:

D _d-ij’;lj =0 (2.8)

where p, is the traction rate tensor per unit volume and » the outward normal to the boundary of
the body.

Navier's equation for the two-dimensional problem is given by the following formula, after
combining egs. (2.1), (2.2), (2.4), (2.7) and (2.8):

. g; . v
— U = _Ej+ 2(55”1. +1—2v

g,ﬁwJ (4, /,k,1=12) (2.9)
A solution of Navier's equation (2.9) for the two-dimensional problem has the following form:
i, () = j v, (. 02, () = T, (v, )i () Ja,
+[U; (.22, () d B, +[ 26U, 7, (x)d B, (2.10)
B B

(4, j,k=12)
where B is the area of cross-section of the body, I the boundary of B, z; the traction vector, X
and Y are surface points and x and y are interior points.

In addition consider the formula of symmetry of the plastic strain rate tensor:
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. 1 .
26U, &, = ZG[E U, +Us, )}gjp,( (2.11)

Recalling Kelvin's solution, then (2.11) takes the form:

1

_m[(l—zv)(a,jr,km r)=8ur +2rr ] (212)

iji = ZGUij,k = Kl
where:

r=x—y| (2.13)

By using (2.12), then (2.10) becomes:
i, () = U, (v, )2, (X) = T, (v, X0, (O)JaT,
+[U; (08, () d B, +[2 (v, 1), (x)d B, (2.14)

(4,7, k=12)

The singular fundamental solutions corresponding to unit loads may be written as: [7]

1
Us = arionG (3-4)In(r)5, -7, ] (2.15)

T, = —m“(l—&/)é‘” +2r,r, ]%Jr (=29, —ryinj)} (2.16)

where n is the outward normal to the boundary of the body.

By differentiating (2.14), then one obtains the stress rate tensor:

6,3 () = [ [ 24 (0, )2, (X) = Ty, (0, X0, (O ]aT,
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+[E2h o), (B, ~268L (1) + j S0l (®dB (217)

B

where:

s = T[(1 20)(S,7y + Oy, +8,r )+ 2rr ] (218)

which is Kelvin's solution:

Z;’kl :ZJW m[4vr 2\/51»]»51(]] (219)

where:

ikt~

—[2(1 20)(Syryry +Or1 )+ 20(0 T Ty + O T
27(l—v)r? T

(2.20)

+Oyrry + 0,1 r) =8rr rr, + (1=2v)(6y 6y + 6 ,,0,) — (1-4v)5,6,]

3. Three-dimensional Plastic Stress Analysis of Isotropic Solids
The total strain rate:

éi/‘ = g; + éi (3.1)

consists of the sum of ¢&; and &7 that represent, respectively, the elastic and plastic

g y

components of the strain rate. The total strain rate and the displacement rate u, are related as:

& Z%(L.‘i,j +aj,i) (3.2)

By application of the Hooke’s law for the elastic part of the strain rate tensor, the following
expression for the stress rates is obtained:

1 A+ujyi)+12izvukk5 ~2G&! (3.3)

— LV
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where G is the shear modulus and v the Poisson's ratio.

Making use of egs (3.1) and (3.2), then (3.3) takes the form:

&, =262, —gﬁ)+12%(é,, —éh ), (3.4)

g y y

In terms of the plastic stress components &/, the above result becomes:

2Gv

G, =2G¢, +_—2vé115y. -6/ (3.5)
where the &/ is given by:
6 =268 +22- 81, (3.6)
The conditions of equilibrium are: [1], [5]
G,.+a,=0 (3.7)

in which a, stand for the body force rates per unit volume. On the boundary of the body, the

equilibrium conditions are: [5]

pi - O.-ijnj =0 (3.8)
where n; are components of the outward unit normal vector applied to the boundary of the body
and p, are the traction rates per unit area.

From egs. (3.1), (3.2), (3.4), (3.7) and (3.8) the Navier's equations in three-dimensions are found:
) 1 . a, ) Voo,
U p+—F0—u, =——+2[5§’i +—1—2v 5,§w.j (3.9

1-2v G

a solution of which is: [4]
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i, () = [ U (0, 07, (0 = 73, (0, 001, (0)Ja s,

+ [U; 00)a, (1) AV, +[ 2,002 (k) dV, (3.10)

where S is the surface, 7 the volume, z; the traction vector, X and Y are surface points and x
and y are interior points. By differentiating (3.10) at a load point and by using (3.3), the following
formula for the stress rates is obtained:

65 () = [ 25 (0 02, () = Ty, (3, X (0)]d S,
S

JEziom)amor, - SEE a0 [Lu i, @er, G
In (3.11), 2% are given by
G

[3(1— 2v) (61 +6yrir )+

ikl =

Az(l—v)r?

+3v(5,ir]jr‘k +O 1y r 0y +5ﬂr]ir’k)

~15r 7 rry A (L= 20)(8, 8, +84,8,) — L= 45,5, | (3.12)

where:
Ty =Zyem (3.13)
r= |x—y| (3.14)

Fundamental solutions

In accordance with the method in [41] for the elliptic systems of linear partial differential
equations, the delta function for scalars can be introduced:
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1

2

5r)=-554, ja(r Q)dw, (3.15)

<=

with Ay being the Laplacean with respect to y;. With the aid of (3.15), a fundamental solution is
found such that:

1
Uy () =254, jm, (x,3.0)do, (3.16)
¢
where V;(x,y,¢) isgiven by:
" =A. — — . 0
! 0, (x—y)-£ <0
in which:
1
E gimngjrs er (g)Qns (g)
A ()= 3.18
i (€) oy (3.18)
and:
By (g)zcyklgjgz (3-19)
From egs. (3.16) and (3.17), a fundamental solution of the form:
1
Uy ) =4, | [ 4,00 =3¢, do, (3.20)
¢=1
r-¢=0
is obtained. Here, the Laplacean 4, is given by:
2
A, r= = (3.21)

Consequently, egs. (3.20) and (3.21) lead to:
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U,(x,y)= . (3.22)
"l
where ds is an element of arc length.
For the special case for an isotropic solid, c;y is given by:
2Gv
Chi =gy 915 +Gl5,5,+5,5,) (3.23)
In addition, egs. (3.18), (3.19) and (3.23) can be used to yield:
A _1 1) g (3.24)
eI 2(1 V) '
Consider further the direction cosines of r to be denoted by S;. These result:
¢ =Py, (3.25)

where /; is the new axes, so that the plane A3 = 0 is perpendicular to the vector r. By the use of
(3.24), then (3.22) becomes:

1
U.(x,y)= S, — 3.26
() 87z2Grj_l{ / 2(1 )Cé } (320
Further reduction as a result of (3.25) renders:
1 27
U.(x,y)= o, — 3.27
U(x ») 822Gr _![ i 2(1 )ﬁlkﬁjl knl:| ( )

where:

n, =C0S@, n, =Sing and ny =0

So (3.27) can be integrated to give:
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1 1 1
Uﬁ28MﬁH?_2a—w}%+za—wﬁ%ﬂ”} (329

The three-dimensional fundamental solution finally takes the form:

1

U.=—|83—4v)o. 7. 3.29
Y 167(Q1-v)Gr [( v) v +r”r’J] (3.29)

where:
0, = BBy (3.30)

The corresponding boundary tractions of (3.27) are:

T,, = cz_’/’klUkm,lnj (3.31)
By means of (3.23), then (3.31) becomes:
2Gv

Tij :mUki’kni +G(U!~/~’k +Ukj,i)nk (332)

Inserting (3.29) into (3.32) yields the relation:

1-2 3
T; :_ﬁﬁ@j LTEERY (1—2v) lsﬁ]:’)Jﬁk:’)nk +Bian; = P an (3.33)

This is the expression for the boundary tractions in three dimensions.

4. Three-dimensional Thermoelastoplastic Stress Analysis of Isotropic Solids

Consider the total strain rate glj, which is the sum of the elastic gl/, the plastic .9” and the
T

thermal ¢, strains: [10]

E; =& +g"+8 i,j=123 4.1)

i

where:
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el = aTé‘li (4.2)

J

and where a is the coefficient of linear thermal expansion, T the temperature and J;
Kronecker’s delta.

By assuming the plastic strains £/ to be deviatoric one has:

P _ AP P =
el =efi+én+el =0 (4.3)

Moreover, the relation between the total strains & and displacements ; is valid as:

éy =, +u,, )2 (4.4)

By combining egs. (4.1) - (4.4), Hooke’s law and the equations of equilibrium, we obtain
Navier’s equation for the three-dimensional thermoelastoplastic problem:

. 1 . B. . 2A+v) .
U o +——y,, =—_t42eP 4 aT. 45
BT gy BRI gy (4-9)

where v denotes Poisson’s ratio, G the shear modulus and B, the prescribed body force per unit
volume.

A solution of the Navier’s equation (4.5) is given by the Somigliana identity: [2],[4]

i, () = [[U; e )2, (0=, (i, ()]s,

U B, (0)8V, + [ 2 )eh 0) 48, WAV, (48)

in which 77 denotes the volume of the body, S its surface, X and Y are surface points, x and y
interior points and 7, the traction vector:

i, =6,m, (4.7)

with & the stress rate tensor and m; the outward unit normal to the surface S.
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Ineq. (4.6) U, (x, y) denotes the Kelvin-Somigliana tensor:

(4.8)

U,(x,y)= (xi_yi)(xj_yj)}

1
—<(B-4)5, +
162G(1—v)r {( "), r?

T 4 (x,y) isthe stress tensor corresponding to U, (x, y):

(1—2v){5jk +0; — 0y J+

DT | o o o ’
"o o o,
and T the traction vector correspondingto X ;:
T, =% ,m, (4.10)
with 7 the distance between the points x, y:
r= |x - y| (4.11)

Furthermore, the stress rate tensor a'ij is valid as:

6, =Gl +ujyi)+12_%akyk5[j —Z(Gg'; +G( Lty jaT&UJ

1-2v (4.12)
i, j k=123
By differentiating Somigliana's identity (4.6) at a load point and using (4.12) we obtain:
6 (1) =~[[E0 (0. )2, (1) + Ty (Vi ()] 5,
S
[ 2 (. )B (1) AV, +2GE] (x) +3KaT ()5,
14
o P WL o)+ 8,ad M)AV, ijkn=123 (4.13)
14
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where K denotes the bulk modulus and X, is valid as:

G
=—BA-2v)(6,r, v +O,r.r.)+
Ar(l-v)r® [ ( NOy7i7 + Ot t,)

ijkn

3V(O,r Ty + Oyt 1y + Oyrry + 61w ) =15r,r v, + (4.14)

(L-2v)(540,; +6.5,.) —(1—-4)5,5,, |
i, j, k,n=123

Ineq. (4.13) 7; denotes the traction vector correspondingto X, :

T, =%

i

m, (4.15)

ijkn

where m, is the outward unit normal to the surface S.

Finally, the stress tensor (4.13) gives the complete three-dimensional thermoelastoplastic stress
analysis for every isotropic body.

5. Conclusions

From the previous described analysis, it is clear that plasticity and non-linearity provide great
numerical difficulties. So the stress field for the two — and three — dimensional plasticity has been
reduced to a system of multidimensional singular integral equations.

In addition an extensive report of the three — dimensional thermoelastoplastic stress analysis
was presented by using Navier’s equation and Somigliana identities.
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