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Abstract 
A large class of plasticity problems can be reduced to the solution of a system of multidimensional 
singular integral equations. Consequently, it is of interest to evaluate numerically these systems of 
integral equations of the respective boundary value problem, instead of the problem itself. These 
numerical techniques discretize the domain of the problem under consideration into a number of 
elements or cells. The governing equations of the problem are then approximated over the region 
by functions which fully or partially satisfy the boundary conditions. By the current research the 
following non-linear plasticity problems are investigated: Two-dimensional plasticity problems, 
three-dimensional plasticity problems and three-dimensional thermoelastoplastic stress analysis. 
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1. Introduction 

The theory of multidimensional singular integral equations, with a wide field of applications in 
mathematical physics and engineering mechanics, such as thermoelastoplasticity, viscoelasticity 
and fracture mechanics theory, has developed comparatively slowly over a rather long period. 
Recently however, interest has increased sharply.   

In addition a large class of plasticity problems can be reduced to the solution of 
multidimensional singular integral equations. So, should be evaluated numerically these singular 
integral equations of the respective boundary value problem, instead of the problem itself. Such 
numerical evaluation methods discretize the domain of the problem under consideration into a 
number of elements or cells. Then, the governing equations of the problem are approximated over 
the region by functions which fully or partially satisfy the boundary conditions. 

Over the past years, some papers have been published on the application of the method of 
formulation of plasticity problems, by using systems of singular integral equations. J.L.Swedlow 
and T.A.Cruse [1], S.Mukherjee [2], A.Mendelson [3], H.D.Bui [4], and J.C.F.Telles and 
C.A.Brebbia [5] have studied some plasticity problems by using the Boundary Integral Equation 
Method (B.I.E.M.), while E.G.Ladopoulos [6] - [10] has introduced and investigated the Singular 
Integral Operators Method (S.I.O.M.) for solving some basic plasticity problems. 

On the other hand, many scientists have studied plasticity problems following theoretical or 
numerical classical lines, like finite-elements, etc. Among them we shall mention the following 
authors : O.C.Zienkiewicz et al. [11], G.C.Nayak and O.C.Zienkiewicz [12], W.F.Chen [13], 
Y.Yamada et al. [14], P.V.Marcal and I.P.King [15], R.Hill [16], O.Hoffman and G.Sachs [17], 
P.G.Hodge and G.N.White [18], W.T.Koiter [19], D.C.Drucker and W.Prager [20], W.Prager [21], 
D.N.Allen and R.V.Southwell [22], W.Johnson and P.B.Mellor [23], W.D. Liam Finn [24], Z.Mroz 
[25], J.N.Goodier and P.G.Hodge [26], J.H.Argyris [27], G.G.Pope [28], R.von Mises [29], J.Casey 
and P.M.Naghdi [30] - [32], P.M.Naghdi and J.A.Trapp [33], P.V.Lade [34], P.J.Yoder and 
W.D.Iwan [35], J.H.Prevost [36], and P.K.Banerjee and A.S.Stipho [37]. 

The aim of the current research is to include an extensive generalization of the theory of plastic 
flow, to study its mathematical character, to articulate a reciprocal theorem for quasi-linear 
behaviour and to assemble the foregoing into an extended form of Somigliana's identity, giving the 
displacement rate in terms of the traction, where the displacement rate on the boundary involves 
plastic strain rate. 
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Complex stress plasticity problems are better formulated by using singular integral equation 
methods, rather than domain techniques. A simple recursive relation is presented relating the 
stresses to the initial elastic solution and the plastic strains. 

By foundation is meant the proof of the convergence of approximate solutions to the exact, the 
examination of the stability of solutions, an examination of their rate of convergence and the 
determination of using a practical method of error estimation. 

By the present study are investigated the following plasticity problems: Two-dimensional plastic 
stress analysis of isotropic solids, three-dimensional plasticity of isotropic solids and three-
dimensional thermoelastoplastic stress analysis of isotropic solids. 
 
2 Two-dimensional Plastic Stress Analysis of Isotropic Solids 

Consider the expression between the total strain rate  ijε&   and the displacement rate  : iu&

                                                  ( ijjiij uu ,,2
1

&&& +=ε )                                                     (2.1) 

Beyond the above, the total strain rate is represented by the formula: 

                                                                                                            (2.2) p
ij

e
ijij εεε &&& +=

where    and    are the elastic and plastic components of the strain rate tensor. e
ijε& p

ijε&

 
By applying Hooke's law to the elastic part of the strain rates, then the stress rates  ijσ&   reduce to 

the following form [1], [5], [8]: 

                                                  ( ) p
ijijkkijjiij Gu

v
GvuuG εδσ &&&&& 2
21

22 ,,, −
−

++=                       (2.3) 

where  v  is Poisson's ratio and  G  the shear modulus. 
 
From (2.1), (2.2) and (2.3) the stress rate tensor is assumed to be represented by: 

                                                    ( ) ( ) ij
p
kkll

p
ijijij

GvG δεεεεσ &&&&& −
v−

+−=
22

21
                                   (2.4) 

By inserting the plastic stress components    in (2.4), then one has: p
ijσ&

                                              p
ijijlljiij v

GvG σδεεσ &&&& −
−

+=
21

22 ,                                             (2.5) 
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in which: 

                                                         ij
p
kk
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GvG δεεσ &&&
21

22
−

+=                                          (2.6) 

as is easily seen from (2.4) and (2.5). 
 
Consider further the equilibrium conditions in the interior of the body: 

                                                      0, =+ jiij g&&σ                                                      (2.7) 

in which    are the body force rates per unit volume. jg&
 

On the boundary of the body, the equilibrium conditions are: 

                                                    0=− jiji np &&& σ                                                      (2.8) 

where    is the traction rate tensor per unit volume and  n  the outward normal to the boundary of 
the body. 

ip&

 
Navier's equation for the two-dimensional problem is given by the following formula, after 

combining eqs. (2.1), (2.2), (2.4), (2.7) and (2.8): 

                                  )2,1,,,(,
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A solution of Navier's equation (2.9) for the two-dimensional problem has the following form: 
 

 
[ ]∫ Γ−= xjijjiji XuXyTXXyUyu d)(),()(),()( &&& τ

Γ

BB

)2,1,,(

 

∫∫ ++ x
p
jkkijxjij BxGUBxgxyU d)(2d)(),( , ε&&  (2.10)

 =kji

 
 
 
 
 
 
 
 
 
 
 
where  B  is the area of cross-section of the body,  Γ   the boundary of  B,  τi  the traction vector,  X  
and  Y  are surface points and  x  and  y  are interior points. 

 
In addition consider the formula of symmetry of the plastic strain rate tensor: 
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                                                       ( p
jkjikkij

p
jkkij UUGGU εε && ⎥⎦
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⎡ += ,,, 2
122 )                                  (2.11) 

Recalling Kelvin's solution, then (2.11) takes the form: 

                           [ ]kjiijkjkikijkijjki rrrrrrv
rv

GU ,,,,,,, 2))(21(
)1(4

12 +−+−
−

−==Σ δδδ
π

       (2.12) 

where: 

                                                 yxr −=                                                           (2.13) 

By using (2.12), then (2.10) becomes: 
 

[ ]∫ Γ−= xjijjiji XuXyTXXyUyu d)(),()(),()( &&& τ
Γ

BB
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∫∫ Σ++ x
p
jkjkixjij BxxyBxgxyU d)(),(d)(),( ε&&  (2.14)

=kji  

The singular fundamental solutions corresponding to unit loads may be written as: [7] 
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where  n  is the outward normal to the boundary of the body. 
 
By differentiating (2.14), then one obtains the stress rate tensor: 
 

[ ]∫ Γ−Σ−= xkijkkijkij XuXyTXXyy d)(),()(),()( 1 &&& τσ
Γ
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where: 

                                        [ ]kjiijkjkikijijk rrrrrrv
rv ,,,,,,

1 2))(21(
)1(4

1
+++−

−
−=Σ δδδ

π
    (2.18) 

which is Kelvin's solution: 

                                                 [ ]klijkljiijklijkl vrvr
rv

G δδδ
π

24
)21(2 ,,2

1 −
−

+Σ=Σ                  (2.19) 

where: 
 

                        [ ++++−
−

=Σ iljkkjlijikllkijijkl rrrrvrrrrv
rv

G
,,,,,,,,2

(2))(21(2
)1(2

δδδδ
π
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                        ])41())(21(8) ,,,,,,,, klijlijkljiklkjikjjljlik rrrrrrrr δδνδδδδνδδ −−+−+−++  
 
 

3. Three-dimensional Plastic Stress Analysis of Isotropic Solids 
The total strain rate: 
 
                                                                                                                      (3.1) p

ij
e
ijij εεε &&& +=

 
consists of the sum of     and    that represent, respectively, the elastic and plastic 
components of the strain rate. The total strain rate and the displacement rate    are related as: 

e
ijε& p

ijε&

iu&

                                               ( ijjiij uu ,,2
1

&&& +=ε )                                                      (3.2) 

By application of the Hooke’s law for the elastic part of the strain rate tensor, the following 
expression for the stress rates is obtained: 

                                            ( ) p
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where  G  is the shear modulus and  v  the Poisson's ratio. 
 
Making use of eqs (3.1) and (3.2), then (3.3) takes the form: 

                                                               ( ) ( ) ij
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22                         (3.4) 

In terms of the plastic stress components  ,  the above result becomes: p
ijσ&

                                                                    p
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+=
21

22 ,                      (3.5) 

where the    is given by: p
ijσ&

                                                                   ij
p
kk

p
ij

p
ij v

GvG δεεσ &&&
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The conditions of equilibrium are: [1], [5] 

0, =+ jiij a&&σ                                                 (3.7)                                                                    

in which    stand for the body force rates per unit volume. On the boundary of the body, the 
equilibrium conditions are: [5] 

ja&

                                                                0=− jiji np σ&&                                                  (3.8) 

where  nj  are components of the outward unit normal vector applied to the boundary of the body 
and    are the traction rates per unit area. ip&
 

From eqs. (3.1), (3.2), (3.4), (3.7) and (3.8) the Navier's equations in three-dimensions are found: 
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a solution of which is: [4] 
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[ ]∫ −= xjijjiji SXuXyTXrXyUyu d)(),()(),()( &&&
S

VV
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∫∫ Σ++ x
p
jkjkixjij VxxyVxaxyU d)(),(d)(),( ε&&  (3.10)

 
where  S  is the surface,  V  the volume,  τi  the traction vector,  X  and  Y  are surface points and  x  
and  y  are interior points. By differentiating (3.10) at a load point and by using (3.3), the following 
formula for the stress rates is obtained: 
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In (3.11),  Σijkl  are given by 
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where: 

Σ=  (3.13)

yxr −=  (3.14)

Fundamental solutions 
 

In accordance with the method in [41] for the elliptic systems of linear partial differential 
equations, the delta function for scalars can be introduced: 
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with  ∆y  being the Laplacean with respect to yi. With the aid of (3.15), a fundamental solution is 
found such that: 
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From eqs. (3.16) and (3.17), a fundamental solution of the form: 
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is obtained. Here, the Laplacean  ∆y  is given by: 

                                                           
r

ry
2

=⋅∆                                                     (3.21) 

Consequently, eqs. (3.20) and (3.21) lead to: 
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where  ds  is an element of arc length. 
 
For the special case for an isotropic solid,  cijkl  is given by: 

                                                         ( jkiljlikklijijkl G
v
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In addition, eqs. (3.18), (3.19) and (3.23) can be used to yield: 
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Consider further the direction cosines of  r  to be denoted by  βij.  These result: 

                                                             jiji λβζ =                                                    (3.25) 

where  λj  is the new axes, so that the plane  λ3 = 0  is perpendicular to the vector  r.  By the use of  
(3.24), then (3.22) becomes: 
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Further reduction as a result of (3.25) renders: 
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where: 

                                                              0sin,cos 321 === nandnn ϕϕ   

So (3.27) can be integrated to give: 
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The three-dimensional fundamental solution finally takes the form: 
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where: 

                                                        kjkiij ββδ =                                                      (3.30) 

The corresponding boundary tractions of (3.27) are: 

                                                       jlkmijklim nUcT ,=                                                  (3.31) 

By means of (3.23), then (3.31) becomes: 
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Inserting (3.29) into (3.32) yields the relation: 
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This is the expression for the boundary tractions in three dimensions. 
 
 

4. Three-dimensional Thermoelastoplastic Stress Analysis of Isotropic Solids 
Consider the total strain rate  ijε& ,  which is the sum of the elastic  ,  the plastic    and the 

thermal    strains: [10] 

e
ijε& p

ijε&
T
ijε&

                                                                                             (4.1) 3,2,1,, =++= jiT
ij

p
ij

e
ijij εεεε &&&&

where: 
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                                                                                                          (4.2) ij
T
ij Ta δε && =

and where  a  is the coefficient of linear thermal expansion,  T  the temperature and  δij  
Kronecker’s delta. 

 
By assuming the plastic strains  to be deviatoric one has: p

ijε&

                                                                                               (4.3) 0332211 =++= pppp
ii εεεε &&&&

Moreover, the relation between the total strains  ijε&   and displacements   is valid as: iu&

                                            ( ) 2,, ijjiij uu &&& +=ε                                                        (4.4) 

By combining eqs. (4.1) - (4.4), Hooke’s law and the equations of equilibrium, we obtain 
Navier’s equation for the three-dimensional thermoelastoplastic problem: 

                                            i
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+ ε                                   (4.5) 

where  v  denotes Poisson’s ratio,  G  the shear modulus and  Bi  the prescribed body force per unit 
volume. 

 
A solution of the Navier’s equation (4.5) is given by the Somigliana identity: [2],[4] 
 

[ ]∫ −= Yjijjiji SXuYxTYYxUxu d)(),()(),()( &&& τ
S

 

[ ]∫∫ +Σ++ yjk
p
jkjkiyjij VyTayyxVyByxU d)()(),(d)(),( &&& δε

VV

 

(4.6)

in which  V  denotes the volume of the body,  S  its surface,  X  and  Y  are surface points,  x  and  y  
interior points and  &τ i   the traction vector: 

                                                            jiji mστ && =                                                       (4.7) 

with  ijσ&   the stress rate tensor and  mj  the outward unit normal to the surface  S. 
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In eq. (4.6)  denotes the Kelvin-Somigliana tensor: ),( yxU ij
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and    the traction vector corresponding to  ijT jkiΣ : 

                                                                    kjkiij mT Σ=                                            (4.10) 

with  r  the distance between the points  x, y: 

                                                                    yxr −=                                              (4.11) 

Furthermore, the stress rate tensor  ijσ&   is valid as: 
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By differentiating Somigliana's identity (4.6) at a load point and using (4.12) we obtain: 
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where  K  denotes the bulk modulus and  ijknΣ   is valid as: 
 

[ ++−
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In eq. (4.13)   denotes the traction vector corresponding to  ijT ijknΣ : 

                                                                      nijknijk mT Σ=                                         (4.15) 

where  mn  is the outward unit normal to the surface  S. 
 
Finally, the stress tensor (4.13) gives the complete three-dimensional thermoelastoplastic stress 

analysis for every isotropic body. 
 

5. Conclusions 
 

From the previous described analysis, it is clear that plasticity and non-linearity provide great 
numerical difficulties. So the stress field for the two – and three –  dimensional plasticity has been 
reduced to a system of multidimensional singular integral equations.  

In addition an extensive report of the three – dimensional thermoelastoplastic stress analysis 
was presented by using Navier’s equation and Somigliana identities.     
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