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Abstract 

A computational method is further studied for the solution of the classical open channel hydraulics 

problem to the determination of the free-surface profile of an unsteady flow over a spillway flow in 

dams, for power production. Consequently, by using the Singular Integral Operators Method 

(S.I.O.M.) then the above problem can be reduced to the solution of a special numerical method. 

When a flow rate Q is known, then the velocities and the elevations are computed on the free 

surface of the spillway flow, for the dams. For the numerical solution of the singular integral 

equations are used both constant and linear elements. An application is finally given to the 

determination of the free-surface profile of a special spillway dam and comparing the numerical 

results with corresponding results by the Boundary Integral Equation Method (B.I.E.M.).  
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1.  Computational Method of Open Channel Hydraulics 

Unsteady free-surface flows, which belong to a wider field of classical hydraulics and fluid 

mechanics with special interest for the design of dams, were difficult over the past years to be 

solved accurately and efficiently, because several design and measurement purposes occurred 

during their solution. Hence, the two main reasons of the difficulty for solving such hydraulics 

problems for dams, is firstly the nonlinear character of the boundary conditions and secondly the 

fact that the boundary of the free-surface flow is not known from the beginning.  

Generally, the spillway problems are usually more difficult to be solved than the normal free-

surface open channel hydraulics problems. Some basic parameters of the spillway flows, like the 

discharge, the free surfaces and the speeds are very important for the design of the hydraulics 

structures. During the past years the above mentioned parameters were usually obtained through 

experiments. Moreover, the increasing development of computer techniques in hydraulics and fluid 

mechanics problems over the recent years, made efficient the possibility of obtaining such data by 

using numerical methods, as well.  

As a start R.V. Southwell and G. Vaisey [1] used finite differences for the determination of the 

free waterfall. Some years later the finite difference method was used with a satisfactory success by 

J.S. Mc Nown, E.Y. Hsu & C.S. Yih [2] and by J.J. Cassidy [3] for the  calculation of the flow over 

a spillway.  

Moreover, the application of Finite Elements for the study of hydraulics problems was 

introduced by J.A. Mc Corquodale and C.Y.Li [4] who investigated sluice gate flows. The finite 

element method was further applied by S.T.K. Chan, B.E. Larock and L.R. Hermann [5] for the 

solution of the surface fluid flows and M. Ikegawa and K. Washizu [6] for the investigation of a 

flow over a spillway crest. Beyond the above, the Finite Element Method was further improved by 

L.T. Isaacs [7], [8] for solving  potential flow problems and sluice gate flows. On the contrary, by 

using Finite Elements B.E. Larock [9] studied spillway flows and H.J. Diersch, A. Schirmer and 

K.F. Bush [10] several generalized open channel hydraulics problems. Beyond the above, E. 

Varoglou and W.D.L. Finn [11] and P.L. Betts [12] applied the finite element method for the 

solution of free surface gravity flows. 
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Additionally, the Boundary Element Method (B.E.M.) was used for the solution of open channel 

flows hydraulics problems and especially those involved to the determination of a free surface 

under non-linear boundary conditions, by J.A.Ligget [13] and A.H.-D. Cheng, J.A. Liggett and 

P.L.-F Liu [14].  

The complex variable function theory was also used for the solution of free surface potential 

flow problems. The above method was applied when the effort of gravity is neglected and the 

geometry of the solid boundary consists of straight segments. T.S. Strelkoff [15] used a 

computational method based on the complex variable function  theory for the numerical evaluation 

of the sharp-crested weir flows. By using a corresponding method T.S. Strelkoff and M.S. Moayeri 

[16] studied the waterfall from a flat channel with horizontal and vertical walls. Besides, Y. Guo et 

al. [17] proposed a numerical method for the determination of the spillway flow with free drop and 

initially unknown discharge.  

Over the past years, E.G. Ladopoulos [18] - [23] and E.G. Ladopoulos and V.A. Zisis [24], [25] 

investigated and studied linear and non-linear singular integral equations methods for the solution 

of fluid mechanics problems. By the current research the above methods will be extended to the 

solution of potential and unsteady flows problems over spillways. Hence, the Singular Integral 

Operators Method (S.I.O.M.) [23], [26]-[35] is applied to the determination of the free-surface 

profile of a spillway in a dam. For the numerical solution of the singular integral equations both 

constant and linear elements are used.  

The construction of a dam, although not requiring building consent, will nevertheless require 

careful consideration concerning design and construction methodology. All dams require at least 

one working spillway. A flood spillway prevents high stream flows generated by heavy or 

prolonged downpours overtopping the dam crest causing subsequent erosion of the dam materials 

that may lead to a breach of the dam. The flood spillway is normally formed around the end of the 

small dam and extends downstream clear of the dam toe. The flood spillway should be of a size 

adequate for flood flows expected for the rainfall and catchment size/topography. A smaller service 

spillway for a dam may also exist and will normally be a culvert/pipe which takes normal flows. 

Finally, an application is given to the determination of the free-surface profile of a spillway of a 

dam by using the Singular Integral Operators Method (S.I.O.M.) and comparing the outprints with 

corresponding results by the Boundary Integral Equation Method (B.I.E.M.).  

 

2.  Computational Method of Potential Flows for Dam Hydraulics 

Consider an homogeneous, incompressible and inviscid fluid, which flows over a spillway. As 

the flow is irrotational, then for the stream function  f , with ff , one has: [23] 

 

          x f = 0             (2.1) 

 

Also, because of the conservation of mass for an incompressible fluid, then it is valid: 

 

           f = 0              (2.2) 

 

By combining (2.1) and (2.2.) we obtain the equation of  Laplace which is the governing 

equation in the domain Ω: 

 

                                 
2
 f =  0             (2.3) 

    

The boundary conditions corresponding to the above hydraulics problem are: 

 

a. Essential conditions of the type:  f=0 on the lower  

                                          boundary and on the spillway wall                              (2.4) 

                                   and  f = Q on the free surface 

                                          where Q denotes the flow rate per unit width. 

b. Natural conditions of the type as follows: 
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n

f
v




              (2.5) 

 

where  v  is the velocity and  n  the unit normal from the free surface.  

    

In addition, on the free surface the dynamic boundary condition is valid: 

 

              Hy
g

v


2

2

                         (2.6) 

 

in which  g is the acceleration of gravity, y the free surface elevation and H the design load.  

(see: Fig. 1). 

 

 

 
 

Fig. 1 Free-surface profile of a Spillway. 

 

 

Consequently, because of (2.6), then the natural condition (2.5) may be written as: 

 

                                        )(2 yHg
n

f





                                    (2.7) 

 

Also, by the present research of the flow over a spillway, the flow rate Q is known, while the 

design load  H  is required as part of the solution.  

 

It is obvious that the spillway flow extend to , but for the purposes of the numerical solution 

the inflow and outflow streams are cut at right angles to the primary velocity. Hence, on the cut 

portions the following boundary condition is valid:  

 

           0
n

f




            (2.8) 
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By condition (2.8) follows that there is no velocity normal to the main flow. Although this 

condition is approximate, it is applied enough far from the spillway crest and thus any small error 

does not affect the interesting part of the flow.  

 

Thus, when a flow rate Q is known, then the position of the free-surface boundary is assumed 

and the problem is solved by using the above described boundary conditions. Moreover, by (2.6) 

the hydraulic load  H  is calculated on the free surface. Hence, if  H  is the same for  all free-surface 

points, then the problem is solved. Otherwise, the assumed free surface is changed, so that the 

hydraulic load  H  becomes constant at all points.  

 

3. Computational Method of Small Dam Hydraulics - Singular Integral Operators Method 

(S.I.O.M.)  
 

We consider a weighting function  f*, in order to have continuous first derivatives. So, the 

function  f*  produces the weighted residual statement as following: [23], [26] - [33] 
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          (3.1) 

 

where by (-) are meant average values and  Γ1,  Γ2  are the boundaries, in which the essential and 

the natural conditions are affected, respectively.  

     

Beyond the above, by integrating by parts the left hand side of (3.1) we have: 
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A second integration in the left hand side of  (3.2) gives: 
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For a solution satisfying the Laplace equation, the governing equation takes the form: 

 

 

      2
f* + Δi = 0            (3.4) 

 

where  Δi  denotes the Dirac delta function 

    

So, the solution of (3.4) is called the fundamental solution and has the property such that: 

 

    

                     

Ω

i

Ω

i fdΩffdΩff *2*2 )(            (3.5) 
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where  if   is the value of the unknown function at the point  "i"  where a concentrated load is 

acting. 

 

  Then, if (3.4) is satisfied by the fundamental solution, we obtain: 

 

                           

Ω

ifdΩff )( *2
                       (3.6) 

  

By using further (3.6), then eqn (3.3) can be written as: 
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Moreover, by taking the point "i" on the boundary, then the term  fi  in (3.7) has to be multiplied 

by 1/2 for a smooth boundary. On the contrary, if the boundary is not smooth at the point "i", then 

the number 1/2 has to be replaced by a constant which can be determined from constant potential 

considerations.  

    

Hence, (3.7) takes the form: 

 

 

                                     
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in which  Γ = Γ1+Γ2  under the conditions  f  =f  on  Γ1 and vv
n

f





 on Γ2. Also, the constant  

ci  can be determined by the relation:  

 

                  
π2


ic                            (3.9) 

 

where  Θ  denotes the internal angle of the corner in rad. 

 

(a)  Constant Elements 
In order (3.8) to be numerically calculated by using constant elements, then this equation may 

be written as:  
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Additionally, (3.10) can be further written as: 
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where:      Aij = Aij
*    

,       when  ij 

      Aij = Aij
* 
+ ci   ,  when i=j                                                 (3.12) 

 

 

Hence, (3.11) takes the form:     
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or in matrix form will be written as: 

 

                            Α f = B v          (3.14) 

 

    

Beyond the above, by reordering the above equation so that all the unknowns are on the left 

hand side, then we have: 

 

                            C X = D                      (3.15) 

  

 

where X is the vector of unknowns  f  and  v.  

 

Thus, if the values of  f and v on the whole boundary are known, then  f can be calculated at any 

interior point by the following formula: 
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(b)  Linear Elements 
On the contrary, for the numerical solution of (3.8) by using linear elements, then this equation 

may be written as: 
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By the current case, in contrary to (3.10), the variables  fj  and 
n

f j




 cannot be taken out of the 

integral as they vary linearly within the element. 

  

So, by using linear elements then (3.17) can be also written as:  
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 By using a corresponding method, as for eqn (3.13), then the above equation takes the form: 
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and in matrix form:  

 

                            Α f = B v       (3.20) 

  

Thus, by using either the constant elements or the  linear elements then the velocities 

 v = f/n  are computed  on the free surface of the spillway flow.  

 

Then, the free surface elevations  y, are further computed  by the formula:  

 

                  y = 
v

Q
      (3.21) 

 

and so the free-surface profile is fully determined.  

 

4. Computational Application of a Two-dimensional Free-Surface Profile of Spillway in Small 

Dams Hydraulics 

 

The previous outlined theory will be applied to the determination of the free-surface profile over 

a spillway of height h = 7.55 m, designed for a flow rate of 3.72 m
3
/sec/m of width. The above 

problem has been previously solved by A.H.D. Cheng, J.A. Liggett and P.L.F. Lin [14] by using 

the Boundary Integral Equation Method (B.I.E.M.). Hence, a comparison will be made between the 

results of the Singular Integral Operators Method (S.I.O.M.), and the Boundary Elements.  

 

 

Fig. 2  Surface Profile for a Spillway with  Q = 3.72 m
3

/sec/m width 
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The above problem was solved by using both constant and linear elements. Thus, as it can be 

seen from Figure 2 the results of the linear elements by using the S.I.O.M., are in good agreement 

with the corresponding results by the Boundary Element Method. Beyond the above, there is a 

small disagreement between the results of the constant elements of the S.I.O.M. and the Boundary 

Elements. This is basically explained by the fact that the constant elements are not well fitted in the 

zone of uncertainty of the flow over the spillway.  

 

 

5.  Conclusions 

 

The free-surface profile of the unsteady flow over a spillway dam was determined by using the 

S.I.O.M. (Singular Integral Operators Method). The above is among the very important problems 

of classical hydraulics and especially in open channel unsteady flows. In addition, some basic 

parameters of the unsteady spillway flows, like the discharge, the free surfaces and speeds are too 

important for the design of the spillways. Over the past years the above hydraulic parameters were 

obtained through experiments, but with the continuous development of the numerical methods in 

hydraulics problems, became efficient the possibility of obtaining such parameters through 

computational methods. 

 

On the contrary, the governing equation for solving potential flow problems is the equation of 

Laplace. Hence, by using the Laplacean and choosing some proper boundary conditions, then the 

unsteady flows over a spillway dam are calculated by using a computational method based on the 

singular integral equations. For the numerical evaluation of the singular integral equations were 

used both constant and linear elements. An application was further given to the determination of 

the free-surface profile of a special spillway dam and the results were compared with 

corresponding numerical results by the Boundary Integral Equation Method (B.I.E.M.).  

 

The proposed method by using the Laplacean together with the Singular Integral Operators 

Method for solving potential problems can be applied in several other hydraulics problems of open 

channel flows. Hence, in future special attention must be given to the research and application of 

the integral equation methods to the solution of several important hydraulics problems of  open 

channel flows.  
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