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Abstract 

An innovative method is further investigated and studied for the approximation of the non-linear 

singular integro-differential equations defined in Banach spaces. Hence, the collocation numerical 

approximation method is applied for the approximation of such type of non-linear equations, by 

using a system of Chebyshev functions. Furthermore, through the application of the collocation 

numerical method is investigated the existence of solutions for the system of non-linear equations 

used for the approximation of the non-linear singular integro-differential equations, which are 

defined in a complete normed space, i.e. a Banach space. 
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1. Introduction 

Several problems of engineering mechanics, like structural analysis, fluid mechanics and 

aerodynamics, are reduced to the solution of non-linear singular integral and integro-differential 

equations. Consequently, there is an increasing interest for the solution of such type of non-linear 

integral equations, since these are connected with a wide range of problems of an applied character. 

The theory of non-linear singular integral and integro-differential equations seems to be 

particularly complicated if closely linked with applied mechanics problems. 

Having in mind the implications for different problems of engineering mechanics, 

E.G.Ladopoulos [1]-[12] and E.G.Ladopoulos and V.A.Zisis [13]-[15] introduced and investigated 

non-linear singular integral equations and non-linear finite-part singular integral equations. This 

type of non-linear equations has been applied to many problems of structural analysis, fluid 

mechanics and aerodynamics.  

On the contrary, some studies have been published, investigating non-linear integral equations 

of simpler form, without any singularities. Among the authors who studied non-linear theories used 

in applied mechanics, we mention the following: J.Andrews and J.M.Ball [16], S.S.Antman [17], 

[18], S.S.Antman and E.R.Carbone [19], J.M.Ball [20] - [22], H.Brezis [23], P.G.Ciarlet and 

P.Destuynder [24], P.G.Ciarlet and J.Necas [25], [26], J.E.Dendy [27], Guo Zhong-Heng [28], 

H.Hattori [29], D.Hoff and J.Smoller [30], W.J.Hrusa [31], R.C.MacCamy [32] - [34], B.Neta [35], 

[36], R.W.Ogden [37], R.L.Pego [38], M.Slemrod [39], and O.J.Staffans [40]. 

By the present research  a new computational method is further improved, for the numerical 

evaluation of the non-linear singular integro-differential equations defined in Banach spaces. 

Hence, a new form of the collocation approximation method is investigated for the numerical 

calculation of the non-linear singular integro-differential equations, by studying the existence and 

uniqueness for their solution. For the numerical evaluation of the non-linear singular integro-

differential equations which are defined in the Banach spaces, is used a system of Chebyshev 

functions continuous on    , . Consequently, through application of the collocation method the 

existence of solutions for the system of non-linear equations used for the approximation of the non-

linear singular integro-differential equations is investigated. 
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2. Existence Theorems of Non-linear Singular Integrodifferential Equations  

 

Definition 2.1 

Consider the non-linear singular integro-differential equation: 

                               )(),(),(,, tutuStutF                                                  (2.1) 

with: 
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in which u(x)  is the unknown function,  g(t)  a known function,  ( )   t   and  

 ),(),(,, tuStutF    is the non-linear kernel. 

 

 

Definition 2.2 

Let    0
1 ,, tC p    denote the set of functions u(t) satisfying a Lipschitz condition on the 

interval   , ,  which satisfy equation  0)( 0 tu   and for which the period  )()( tutp    is 

continuous on the above interval, where  p(t)  is some nonnegative function defined on    ,   

such that the integrals: 
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exist. 

By introducing the norm  )()(max)( tutptu    into    0
1 ,, tC p  ,  it becomes a complete 

normed space, and thus a Banach space. 

 

 

Theorem 2.1 

Consider the nonlinear singular integro-differential equation (2.1). Besides, concerning  

 vutF ,,,   we assume that the function   ),(),(,,)( tuStutFtp    is continuous on    ,   for  

  0
1 ,,)( tCtu p  ,  has continuous partial derivatives with respect to  u  and  v  with the other 

arguments fixed, and satisfies the inequalities: 
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in the region    ),0(,,  rtrvur  ,  where  ),,(1 xf    and  ),,(2 xf    are 

nondecreasing functions of     and  x . 

Consider further that  qrf ),(   with   rq 0,10 .  Then, for any initial function  

 u t U u t u t rr0 ( ) ( ): ( )   ,  the sequence: 

                                         ,...)2,1,0(),,()( 11  ntuStu nn                                               (2.6) 

converges to the unique solution    0
1

* ,,)( tCtu p    of the non-linear singular integro-

differential equation (2.1). 

 

Proof. We replace  ),( tf    by two terms as follows: 

                                       ),,(),,(),( 21 ttfttftf                                                   (2.7) 

and consider the following equation: 

                                                           rhrrf  )(),( 2                                                            (2.8) 

where: 

                               )0,0,,()(max)(2 tFtph
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Beyond the above, the operator  ,...2,1,0),,,(1 ntuS n   in (2.6) shall be of the form: 

                                 
t
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and  )(0 tu   is a given function. Hence, on the basis of the study in [10] the theorem can be proved. 

 

If  qrf ),( 0 ,  where  0r   is a root of (2.8), then for any initial approximation  
0

in)(0 rUtu ,  

the sequence (2.6) converges to the unique solution    0
1

* ,,)( tCtu p     of  (2.1). Besides: 
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on   , , where: 

 

                                 )()(),(),(,,)(max)()( 000   ttutuItutFtptat . 

 

3. Collocation Approximation - Non-linear Singular Integro-differential Equations  

 

Theorem 3.1 

Consider the non-linear singular integro-differential equation (2.1). Suppose that the function  

 vutF ,,,   has continuous partial derivatives with respect to  u  and  v,  which for  0)( tp   on  

  ,   satisfies (2.5) in the square   rrvu ,,    and suppose that  1),(  qrf    with  ),( rf    

given by (2.7). 

 

Furthermore, consider the system of non-linear equations: 

                                             ),...,2,1(0),( mivH im                                                  (3.1) 

where   m
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  ,   with: 
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in which   )(xk   is a given system of Chebyshev functions which are continuous on    , .  

Then the system of non-linear equations (3.1) has a solution  )(* tum   in  

   rrtutuU r 0,)(:)(   which approaches the unique solution  )(* tu   of (2.1) as  m . 

 

Proof. According to (3.1) consider the equation: 

                                             0),( tuH mm                                                           (3.3) 

where  ),( tuH mm   is a function of the form: 
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and  ij   is the Kronecker delta. 

 

Moreover, consider the existence of a solution of (3.3). Thus, we use an interpolation process of 

the form (2.6), which in connection with this equation, may be written as: 
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and  )()0( tum   is a given initial function. 

 

It can be therefore shown that, under the same assumptions under which we proved Theorem 

2.1, for any two functions  )(1 tu   and  )(2 tu   belonging to the ball   rtutuU r  )(:)( ,  the 

following inequality norm of    0
1 ,, tCp    is fulfilled: 
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As the derivatives   ),(,,, 2 tuIxtFu    and   xtutFv ),(,, 1   are continuous in  x,  then (3.9) can 
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where  ),(),,(,1,1 221121 tt   . 

 

Then, as  utatu )()(    and  utbtuI )(),(  ,  where  a(t)  and  b(t)  are determined by the 

given function  p(t)  and because (2.5) is true, (3.7) is true, too. 

 

Moreover, if  1m ,  then the operator (3.6), acting from    0
1 ,, tC p    into the same space, 

is a contraction operator, and therefore (3.3) will have a unique solution  )(* tum   in the ball  Ur,  to 

which the sequence   )()( tu n
m   will converge as  n   for any initial function  rm Utu )()0( . 

 

By using the same method as for  )(ti ,  we are taking a linear combination of the functions  

  ),...,2,1()( mktFk    and, so (3.3) and its solution  )(* tum   can be written as following: 
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where  
*
mka   are determined numbers. By the same way  )(* tum   will be a solution of (3.1), for  

),...,2,1(0)( mip i  . 

 

Besides, it is possible to put ),...,2,1(),()( mkttF kk  . We use further the Feier interpolation 

process  ,...)2,1()( mQm   on the interval   , defined for a given function  )(f   by  

),...2,1(,0)(),()( mkQfQ kmkkm   ,  where    mkmkk 2)12(cos  are the 

Chebyshev nodes, i.e., the  k   are the zeros of the polynomial of degree  m  which differs at least 

from zero in the uniform metric space on    , : 
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Furthermore, the interpolation polynomial  )(mQ   has the following form: 
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and  1m   for this. 

 

We will further show that, as  m ,  the approximate solutions  )(* tum   converge in the form 

of    0
1 ,, tC p    to a solution of (2.1). 

 

Thus, we introduce the notation: 
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and: 

                                       ),(),(,,),(),(,,)(),,( *** tuStutFtuStutFtptuuH          (3.21) 
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is valid, where   mm and . 

 

In addition, under the conditions that  ru    and  ru * ,  we can take  ω  to be  2r  and, 

therefore, follows that  mm rfr   ),(2 ,  i.e., these numbers are bounded for all  m. 

 

Because of the convergence of the Feier interpolation process [41] in the class of continuous 

functions, for any fixed function  ),(),( * turtu m   and the remainder  ),,( * tuurm   approach zero on  

  ,   as  m . Also, the remainder  ),,( * tuurm   also converge uniformly to zero with 

respect to function  u(t)  belonging to the     ** :)( uutuU . 

 

Also, for fixed  t  in    ,   and  u(t)  in  
*
U ,  we split the set of numbers  1, 2,…, m  into two 

groups:  )(uS I   and  )(uS II ,  assigning to  )(uS I   those  k  for which  1  tk   and to  )(uS II   

the remaining ones. Then we have  )()(),,( 21
* tStStuurm  ,  where: 
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Because of the continuity of  ),,( *uutH   on    , : 
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is valid and in this  ε  can be arbitrarily small for small values of  δ1. 
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Additionally, if  )(uSk II ,  then by taking into account the explicit form of  )(tk   and the 

inequalities  22 20   kt   and  
12)(  mm

m tT  ,  we have: 

                                                   
2
1

2

2

4
)(





m

M
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where  M  is the largest value of  H t u u( , , )*   in the set     Uut  ,, . 

 

Furthermore, the inequalities (3.24) and (3.25) are valid for all    t   and  *)( Utu  . So,  

0mr   as  m . 

 

As  )(* tu   is the unique solution of (2.1) in  rU ,  follows that this equation does not have any 

solutions in the ring    *uu ,  for   0 ,  i.e. there exists an  0),( a   such  that  

),(),,(1  atuSu    for    *uu . 

 

In this ring therefore for any: 

),,(),,(),,(),,(),( 11 tuStuStuSutuSutu mm    is valid, and for sufficiently large  

),(),,(),,(, 1  artuStuSm mm    and hence  0),(),,(  mm ratuSu    for 

large  m.  Hence, follows that the  )(* tum  of (3.3)  cannot be in the ring    *uu   and, 

therefore   ** uum ,  where  ε  is positive and arbitrary, which finally proves  Theorem 3.1. 

 

4. Conclusions 

 

The present research was devoted to a study of new approximation methods for the solution of 

the non-linear singular integro-differential equations, defined in closed-normed spaces, i.e. Banach 

spaces. This was an exposition of the conditions of applicability of the method of collocation to 

those non-linear equations and for the convergence of the method. 

 

Besides, a system of Chebyshev functions was used in the collocation approximation method for 

the investigation of the existence of solutions for the system of non-linear equations applied for the 

numerical solution of the non-linear singular integro-differential equations. Closed-form solutions 

of such type of non-linear equations are not possible to be determined, because of the big 

complication of their term. So, they are approximated only by special numerical methods. 

 

Consequently, the collocation approximation methods can be used for the numerical solution of 

non-linear singular integro-differential equations defined in general problems of structural analysis, 

fracture mechanics, fluid mechanics, potential flows, aerodynamics, turbomachines, etc. of great 

importance. 
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