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Abstract

An innovative method is further studied by applying the Singular Integral Operators Method
(S.1.0.M.).for the determination of the properties of non-wood cellulosic fibers used for paper
manufacturing. Hence, the solution of the anisotropic elastic stress analysis problem is studied,
which defines the basic feature for the mechanical behavior of non-wood cellulosic fibers. Thus,
the above innovative technology depends on the existence and explicit definition of the
fundamental solution to the governing partial differential equations. Then, after the determination
of the fundamental solution, a real variable boundary integral formula is generated. Additionally,
the construction of the solution for the composite solids problem is presented as is the derivation of
the expression for the surface tractions necessary to maintain the fundamental solution in a
bounded region. Many parameters, like intensity factors, incorporate stress kernels, geometry and
crack size, may be evaluated by the elastic stress analysis of cracked structures. Thus, by using the
S.1.0.M., then the anisotropic elastic stress of composite solids will be determined.
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1. Introduction

In general, pulp and paper production is one of the high demand sectors in the industrial world.
At present world paper production is about 500 million tons. Cleaner technology is applied to
achieve increased production with minimum effect on the environment and to save, utilize, and
recycle expensive and scarce chemicals and raw materials. Thus, the increasing demand for paper
has raised the need for low-cost raw materials and also the developing of new process in order to
boost production.

Hence, non-wood fibers, for example agricultural residues and annual plants, are considered an
effective alternative source of cellulose for producing pulp and paper sheets with acceptable
properties in lower cost. There is a growing interest in the use of non-wood such as annual plants
and agricultural residues as a raw material for pulp and paper. So, non-wood raw materials account
for less than 10% of the total pulp and paper production worldwide.

The benefits of non-wood plants as a fiber resource are their fast annual growth and the smaller
amount of lignin in them that bind their fibers together. Another benefit is that non-wood pulp can
be produced at low temperatures with lower chemical charges. As the world pulp production is
unlikely to increase dramatically in near future, there is a practical need for non-wood pulp to
supplement the use of conventional wood pulp. Additionally, the specific physical and chemical
characteristics of non-wood fibers have an essential role in the technical aspects involved in paper
production.

Also, the production of pulp from non-wood resources has many advantages such as easy
pulping capability, excellent fibers for the special types of paper and high-quality bleached pulp.
They can be used as an effective substitute for the forever decreasing forest wood resources.
Besides to their sustainable nature, other advantages of non-wood pulps are their easy pulping and
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bleaching capabilities. These allow the production of high-quality bleached pulp by a less polluting
process than hardwood pulps and reduced energy requirements.

Traditionally non-wood material is cooked with hybrid chemimechanical and alkali-based
chemicals. In chemical pulping, the raw materials are cooked with appropriate chemicals in an
aqueous solution at an elevated temperature and pressure. The objective is to degrade and dissolve
away the lignin and leave behind most of the cellulose and hemicelluloses in the form of intact
fibers. Thus, in practice, chemical pulping methods are successful in removing most of the lignin
and they also degrade and dissolve a certain amount of the cellulose and hemicelluloses.

One group of the most promising pulp processes is called the Organosolv processes. Hence, in
terms of production technologies, novel and improved processes are proposed. The Organosolv
methods are based on cooking with organic solvents such as alcohols or organic acids. Methanol
and ethanol are common alcohols used and the organic acids are normally formic acid and acetic
acid. High cooking temperatures and associated high pressures are needed when alcohols are used
in cooking. The Organosolv process has certain advantages. It makes possible the breaking up of
the lignocellulosic biomass to obtain cellulosic fibers for pulp and papermaking, high quality
hemicelluloses and lignin degradation products from generated black liquors, thus avoiding
emission and effluents. Thus, the Organosolv pulping process is an alternatives to conventional
pulping processes, and has environmental advantages. Organosolv pulping features an organic
solvent in the pulping liquor which limits the emission of volatile sulfur compounds into the
atmosphere and gives efficient chlorine-free bleaching. These processes should be capable of
pulping all lignocellulose species with equal efficiency. Another major advantage of the
Organosolv process is the formation of useful by-products such as furfural, lignin and
hemicelluloses.

By the current investigation plants like kenaf (Hibiscus cannabinus L.) and giant reed (Arundo
donax L.) are proposed as internodes gave very good derived values, especially slenderness ratio,
which is directly comparable to some softwood and most hardwood species. Chemical analysis of
the raw plant materials revealed satisfactory levels of a-cellulose content (close to 40%) and
Klason lignin content (<30%) compared to those of hardwoods and softwoods.

The above non-wood plants offer several advantages including short growth cycles, moderate
irrigation and fertilization requirements and low lignin content resulting to reduced energy and
chemicals use during pulping. The fiber dimensions are shown in Table 1. As a dicot, kenaf has
two distinct kinds of fibers-long bark fibers, which account for 35% of its fibrous part, and short
core fibers, which account for the rest. Bark fibers have very good derived values (especially
slenderness ratio) compared to those of some softwoods and certainly to most hardwoods.
Consequently, papers made from kenaf bark fibers are expected to have increased mechanical
strength and thus be suitable for writing, printing, wrapping and packaging purposes.

Table1

Non-wood Fiber Dimensions

Plant Material Length (mm) Diameter (um) Lumen Diameter(um) | Cell Wall Thick.(um)
Kenaf (bark) 2.32 21.9 11.9 4.2
Kenaf (core) 0.74 22.2 13.2 4.3
Kenaf (whole) 1.29 22.1 12.7 4.3
Reed (internodes) 1.22 17.3 8.5 4.4
Reed (nodes) 1.18 18.8 8.6 5.6

Hence, because of their lower lignin content (compared to wood), non-wood plants can be
pulped in one-third of the time needed for softwoods and hardwoods. Pulping of non-wood fibers
also demands around 30% less chemical charge, and reduced power consumption in pulp refining.
Many homogeneous solids like paper or pulp are often anisotropic (or at least orthotropic from
point to point).
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Over the past years, special effort has gone into studying stress fields in anisotropic solids,
because numerous engineering materials under normal or loading conditions show different
mechanical properties along certain preferred directions. Among them we shall mention the
following authors, following classical lines: S.G.Lekhnitskii [1]-[5], G.N.Savin [6]-[10],
M.O.Basheleishvili [11], [12], J.R.Willis [13], H.T.Rathod [14], S.Krenk [15], G.C.Sih and
H.Liebowitz [16], G.C.Sih and M.K.Kassir [17] and G.C.Sih et al. [18].

On the contrary, by using an integral transform method obtained by I.N.Sneddon [19], [20] the
governing partial differential equation of anisotropic elasticity is solved, while G.E.Tupholme [21],
D.D.Ang and M.L.Williams [22], O.L.Bowie and C.E.Freese [23] have studied some fracture
mechanics problems of orthotropic media.

Singular integral equation methods for solving two- and three-dimensional problems of cracks
and holes in anisotropic bodies have been introduced by F.J.Rizzo and D.J.Shippy [24], S.M.Vogel
and F.J.Rizzo [25], M.D.Snyder and T.A.Cruse [26], [27], E.G.Ladopoulos [28], [29], K.S.Parihar
and S.Sowdamini [30], T.Mura [31], C.Ouyang and Mei-Zi Lu [32], R.P.Gilbert et al. [33],
R.P.Gilbert and M.Schneider [34], R.P.Gilbert and R.Magnanini [35] and U.Zastrow [36] - [38].

Consequently, the Singular Integral Operators Method (S.1.0.M.) [40]-[45] which was used
very successfully for the solution of several engineering problems of fluid mechanics, hydraulics,
aerodynamics, solid mechanics, potential flows and structural analysis, is further extended by the
current study for the solution of problems of non-wood cellulosic fibers for paper manufacturing.

2. Innovative Method of Anisotropic Elastic Stress Analysis Formulation

Let us consider the stresses (0,,0,,0,,7,,,7,.,7,,) in terms of strains
(£,58,,€.57 .5V >V x,) through a set of constants Cy, which are called the moduli of elasticity:

Oy C, G, Cs €y C5 Cg x
Oy Cy Cp Gy Gy Gy Cy y
Oz | _ Gy Gy Gy Gy G5 Gy y € 2.1)
Tyz Cy Cp Cp Cy Cp Cy Vyz
Tx Ci Csp C3 Gy G5 Gy Vo
7] [Ca Co Co Cau Ci Ceu [V

On the other hand, in order to express the strains in terms of stresses, let us use another set of 36
constants a; (i, j = 1,2,...,6), known as the coefficients of deformation:

x ay A 4z Ay G5 4 O,
&y Qy Ay Ay Ay Qys Ay oy
€z |_ |9 Ay Gy Ay i Gy y o, 2.2)
Vyz g Qg Guz Ay dys Gy Tyz
Vx as; dsy as3 sy dss  dsg =
7] %1 9 de des des Ges | | Ty |

Hence, by considering the case where the material is "transversely isotropic", which means, that
it possesses an axis of elastic symmetry such that the material is isotropic in the planes normal to
this axis, then the following formula is valid between the stresses and strains:
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€y ay a, a3 0 0 0 O«
€y ap a, a3 0 0 0 Oy
£, | @ as 0 0 0 y o, 23)
V2 0 0 0 ay O 0 T,
V= 0O 0 0 0 ay 0 T,
7o) L0 0 0 0 0 2ay-ap)]| [Ty
where z is the direction of the elastic symmetry.
The coefficients of deformation in (2.3) are expressed as: [1]
11 El ’ 12 El b
1 v,
Ay =—, a3 =——", 24
33 E2 13 Ez ( )
1 2(1+v,) 1
Ay =—, 2a,—-a,)=—7"-"=—
44 GZ ( 11 12) El Gl

in which E;, G; and v, are the Young's modulus, shear modulus, and Poisson's ratio, respectively,
in the plane of isotropy and E,, G, and v, are the same quantities in the transverse direction.

Beyond the above, in order to express the stress components in terms of strains for a
"transversely isotropic" material we obtain the following formula:

(o, | Gy Cp Gy 00 0 1r e, |
o, C, ¢, C; 0 0 0 5
o, C; C Cy 0 0 0 &,
. = o 0 0 Cu 0 0 X y. (2.5)
7. 0 0 0 0 Cyu 1 0 V.
7o) |00 0 00 S(Ci=Cu)| |7y

where the elastic moduli C; may be expressed as following: [1],[2]

E E
C, =2G,|1-v; L /1=y —2v; 1
E2 E2
E E
Cp, =2G,| v, +vi — 1|/ |[1-v, —2v; =L
E2 E2
E
C,=Eyv l—v, —2v2 =L
13 12/( 1 ZEZJ

(2.6)
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E
Cyy = Ey(1=v)/ [1=v, =2v] L
E,

Cy =G,
1
E(C” - C12)= Gl

Furthermore, in the case of isotropic material, v;=v,, E; =E, and G; =G, and so the elastic
moduli Cj; may be related to the Lamé coefficients 4 and x as:
C=Cp=4+2u

C,=Cs=41 (2.7)

Su, Su, Su,
gx = . E. = . gz =
9 7 9y 3z
‘9“2 9uy
7/yz =
Sy 9z
(2.8)
Su, Su,
Vo = +
3z Sx
Su, SMy
Yo = . T oo
Yy X

where u,, u, and u, are the components of displacements in Cartesian coordinates.

3. Fundamental Solutions for Composite Stress Analysis

Consider a body in three-dimensional space, which has a bounding surface L. According to
Betti's reciprocal theorem and by considering absence of body forces, one obtains: [24],[29]

@1, —wUdRr+ [T, —1,U,)dR=0 (3.1
L r

in which dR is an element of surface area at R, which is a point on L. Furthermore, 7" is the
boundary of the finite or infinite domain of space in coordinates Xi, X, X3, in which exist the
anisotropic elastic body. This boundary I is a connected closed Lyapounov surface.

In (3.1) u; and t; are the displacement and traction components, Uj(x,y) the displacement at
point x in response to a concentrated unit body force acting in the j coordinate direction at point
y, and Tj the suitable boundary tractions.

Beyond the above, Betti's theorem (eg. (3.1)) results in Somigliana's identity [24]:
1
w0 == [l (I (), T, (e, )} AR (3.2)
L
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where the point dependence is explicitly indicated and a is the magnitude of the force
components.

The following two limiting formulas have to exist:

(lgig}) uT; dR=au;(y) (3.3)
lig%) t,U; dR=0 (3.4)

in which ¢ denotes the radius of a sphere centre y, with the boundary 7, and uj(y) the
displacement at the origin corresponding to u; and t; on L.

In order to derive the formula of the fundamental solution, we adopt the method of
decomposition into plane waves used in [39]. Thus, consider the function g, which is an arbitrary
distribution and vanishes outside a finite sphere.

The next formula is a solution of the differential equation:

A u(y)=g() (3.5)

u(y) = j g(x)[— m] dx (3.6)

where Ay denotes the Laplacean with respect to ;.

The following identity is easily seen to be:

.[|(xi_yi)§i|dR=2”|x_y| (3.7)
¢l
From (3.5) and (3.7) we obtain the result:
2
Ay|x—y| = (3.7a)
=1
Consequently, from (3.5), (3.6) and (3.7a) one has:
I o
g0 =—=4& [ [e@l(x,-»)¢ [dRdx (38)
167 L
Beyond the above, consider the function h({;p) which is given by the formula:
¢.p)= [gx)dR (39)

(x)=p

Besides, the following formula is valid:
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[ et -yocldrdr= [ar[lplap [etodx

el =1 (-)<=p
=J?RT|plh(é’=p+y-§)dp (3.10)
R
and:
A, Io|p|h(é“,p+y-§)dp (3.11)

® ¢)
=Ay! j(p—y-@h(@p)}dp— [(p=y-OM(¢, pydp=2h(¢,y-¢)
&) -

From (3.8), (3.10) and (3.11) we obtain:

g0 =——54, [HCy-O)dR (3.12)

¢l=1

By considering the case where:

g(y) = a(y) (3.13)
then we have:
ng,y-g)=06(y-¢) (3.14)
From (3.12), (3.13) and (3.14) we have the expression for the three-dimensional delta function:
1
S(x=y)==—5A, [8(x-)-)dR (3.15)
8% in

Hence, from (3.15) we derive the fundamental solution for the displacements:

1
Uy () =—5A, [W;(x,,0)dR (3.16)
& s
where the function Wj; is given by:

%(x,y,e“>={%(x’y’§)’ (x=2):¢ >0

0. (x—y)-£<0 (3.17)

According to the Cauchy-Kowalewski theorem we have:
W, :Py‘(g)(xk —Vi)Sk (3.18)
So, from (3.16), (3.17) and (3.18) one obtains:

1
Uy, ) =—5A, [P (¢)cospdR (3.19)
87 EE
(x=»)-¢>0

By using (3.7), then (3.19) takes the simpler form:
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1
U, (x,9)=—; jg,(g)cosqadR (3.20)
4r’le=a
(x=y)-¢>0

where ¢ is the angle between the vectors x-y and (.

From (3.20) we derive a simpler form, if the part of the integration over the unit hemispherical
shell of (3.20) involving the azimuthal angle, is carried out:

1
Uy (x,9)=— [P (©)ds (3.21)
87[ |x_y| ‘4‘:1
(x-1)¢>0
in which ds is an element of arc length.

Hence, (3.21) gives the solution for the general case of three-dimensional elasticity.

In addition, P;(¢) in (3.21) is given by:
_ 1/2 gimn ‘c"jrs er (é’)Qns (é/)
Fi(¢)= 4et0

(3.22)

and:
Qik &)= Cy‘kl?,fl
where the constants Cjy are the elasticities, Qj; is the characteristic matrix and the quantities &imn

and detQ are the alternating symbol and determinant of Qj;, respectively. On the contrary, the
suitable boundary tractions Tj; are given by the formula:

T (%, ) = CypU g (%, ¥) 1 (3.22a)

in which n; are the components of the unit outward at the point x on L. Beyond the above, let us
take a new point x* relative to the point x. Then for the vectors x, x* one has:

x' =X+ (3.23)

By the same way, the new point {; relative to the point ¢ is valid as:

¢'=C+ & (3.24)
Consequently, from (3.22a) we obtain in an analogous way, the displacement tensor:
1
Uy (') == §P(¢")ds (3.25)
Ly/4 ‘x —y‘ ‘41‘:1
So, from (3.23) and (3.24), eq. (3.25) takes the form:
1
Uy ('3 = ———— § B, +&)ds (3.26)

87r2|x+é‘x—y| £

Moreover, we introduce the expressions:

(3.27)
and:

_ Xt —Yi _ X X Y
Xi—y|  |x+x-y]|

pe (3.28)
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Hence, it is easy to show that:
_ _ﬂ’}(;k

- A+ 1) (3.29)
1+ A, A4,

1

&,

The insertion of (3.27), (3.28) and (3.29) into (3.26) results the displacements:
Xp— 1
__ =) j:Py»(g“)ds—— J'gk (3.30)

7 87zz|x—y|3 KE 871'2|x—y|3 EE

y l(xq Yy )Rjiq +(x, —y, )Rjir +(x; —yy )Rjis +(x, -y, )Rjit st + 1

P
det0 sl
% [(xl _yl)VVl +(xm _ym)Wm +(xn _yn)Wn +(xp _yp)Wp +('xr _yr)Wr +(xs _ys)WstS

detQ

So, (3.30) gives the solution for the general case of three-dimensional elasticity, while the
boundary tractions Pj are given by (3.22).

4. Conclusions

By the present research non-wood cellulosic materials have been further proposed for pulp
production. The increasing demands for paper and environmental concerns have increased the need
for non-wood pulp as a low-cost raw material for papermaking. This has also led to the developing
of alternative pulping technologies that are environmentally benign. Annual plants and agricultural
residues appear to be well suited for papermaking due to them being an abundant and renewable.

In addition, by the current study plants like kenaf (Hibiscus cannabinus L.) and giant reed
(Arundo donax L.) are proposed as internodes gave very good derived values, especially
slenderness ratio, which is directly comparable to some softwood and most hardwood species.
Moreover, chemical analysis of the raw plant materials revealed satisfactory levels of a-cellulose
content (close to 40%) and Klason lignin content (<30%) compared to those of hardwoods and
softwoods.

Additionally, a mathematical model has been presented as an attempt to determine the
properties non-wood cellulosic fibers. The above mentioned problem was reduced to the solution of
a singular integral equation, which was numerically solved by using the Singular Integral Operators
Method.

Such singular integral equation method will be of increasing interest in future, as these methods
are very important for the solution of generalized solid mechanics and fluid mechanics problems.
Modern problems of fluid and solid mechanics are much more simplified when solved by general
singular integral equation methods.
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