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Abstract 
For the design of the future spacecraft of any speed, the sophisticated theory of “Universal 
Mechanics” is introduced and studied. The proposed theory of “Universal Mechanics” consists of 
the combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity”. 
Hence, according to the above theories there is a considerable difference between the absolute 
stress tensor and the stress tensor of the airframe even in low speeds. Besides, for bigger speeds of 
the future spacecraft, like c/3, c/2 or 3c/4 (c=speed of light), then the difference between the two 
stress tensors is very much increased. Hence, for the future spacecraft with very high speeds, the 
relative stress tensor will be very much different than the absolute stress tensor. Furthermore, for 
velocities near the speed of light, then the values of the relative stress tensor are very much bigger 
than the corresponding values of the absolute stress tensor. The theory of “Relativistic Elasticity” 
is a combination between the theories of "Classical Elasticity" and "Special Relativity" and results 
in the “Universal Equation of Elasticity”. Additionally, the theory of “Relativistic Thermo-
Elasticity” is a combination between the theories of "Classical Thermo-Elasticity" and "Special 
Relativity" and results in the “Universal Equation of Thermo-Elasticity”. The "structural design" 
of super speed vehicles requires the consideration of mass pulsation and energy-mass interaction at 
high velocity space-time scale, as the relative stress intensity factors are different than the 
corresponding absolute stress intensity factors. Such theory results in the "Universal Stress 
Intensity Factors". Thus, the “Universal Equation of Elasticity”, the “Universal Equation of 
Thermo-Elasticity” and the "Universal Stress Intensity Factors" are parts of the general theory of 
“Universal Mechanics”.   
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1. Universal Mechanics for Future Spacecraft 
 
In the near future the International Space Agencies should effect a competitive technological 

advantage in several strategic areas of new and rapidly developing advanced technologies. 
Consequently, the scope by the big Space Agencies is to achieve in the future, an absolute 
spacecraft moving with very high speeds, even approaching the speed of light. So, how far could be 
this future ? According to the present study and research such future could be much closer than 
everybody believes.  

For the future spacecraft the relative stress tensor will be much different than the absolute stress 
tensor and so special solid should be used for the construction of the next generation spacecraft.  

On the other hand, the suitable choice of the solid which should be used for the construction of 
the absolute spacecraft is under investigation, but such solid will be very much different than the 
usual composite materials.  
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So, we will show that there is a significant difference between the absolute stress tensor and the 
stress tensor of the airframe even for low speeds. Additionally, for bigger speeds the difference of 
the two stress tensors will be very much increased. Hence, for bigger velocities like c/3, c/2 or 3c/4 
(c=speed of light) the relative stress tensor is very much different than the absolute one and for 
velocities near the speed of light the values of the relative stress tensor are much bigger than the 
corresponding values of the absolute stress tensor. The study of the connection between the stress 
tensors of the absolute frame and the airframe is included in the theory proposed by 
E.G.Ladopoulos [30] - [32] under the term “Relativistic Elasticity” and “Relativistic Thermo-
Elasticity” and the final formula which results from the above theories is called the “Universal 
Equation of Elasticity” and the“Universal Equation of Thermo-Elasticity”, correspondingly. 
Additionally, both theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity” are 
included in a more general theory under the term “Universal Mechanics”.  

Furthermore, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular 
integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the 
above mentioned publications the Singular Integral Operators Method (S.I.O.M.) is proposed for 
the numerical solution of the multidimensional singular integral equations in which the stress 
tensor analysis of the linear elastic theory is reduced. Besides, the theory of linear singular integral 
equations was extended to non-linear singular integral equations, too. [23]-[29]. Hence, the theory 
of “Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and 
“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the 
airframes.  

Besides, the classical theory of elastic stress analysis and thermo-elastic stress analysis began to 
be analyzed in the early nineteenth century and was further developed during the twentieth century. 
In the past, several important monographs were published on the classical theory of elasticity and 
thermo-elasticity. [33]-[52].  

Over the past years special attention has been given, by many scientists worldwide, on the 
theoretical aspects of the special theory of relativity. Hence, some classical monographs were 
written, dealing with the theoretical foundations and investigations of the special and the general 
theory of relativity. [53]–[60]. Also, by the present research we will show that the "relative stress 
tensor is not symmetrical", while, as it is well known, the "absolute stress tensor is symmetrical". 
Such a difference is very important for the design of the future aircraft and spacecraft of very high 
speeds. Finally, the "structural design" of super speed vehicles requires the consideration of mass 
pulsation [61], [62] and energy-mass interaction [63] at high velocity space-time scale.  

          

2. Universal Equation of Elasticity for Future Spacecraft by Relativistic Elasticity   
Let us consider the state of stress at a point in the stationary frame  S0, defined by the following 

symmetrical stress tensor: (Fig.1)  
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Beyond the above, consider an infinitesimal face element  df  with a directed normal, defined by 

a unit vector  n, at definite point  p  in the three-space of a Lorenz system. The matter on either side 
of this face element experiences a force which is proportional to  df. 
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Fig. 1 The state of stress  σ ik

0  in the stationary system  S . 0

 
Hence, the force is valid as: 

                                                                    fd)()(d nσnσ                                                  (2.3) 
 
The components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  
                                                             3,2,1,,)(  kinkiki  n                                                  (2.4) 
 
where  σik  is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space 

part  ik   of the total energy-momentum tensor  Tik,  referred as the absolute stress tensor. [53], 
[54} (Fig. 2). 

0

 
 
 

 
 

Fig. 2  The state of stress σ  in the stationary system S and σ ik  in the airframe system with velocity  u  

parallel to the x - axis. 
ik
0 0

1

 
 

In addition, the connection between the absolute and relative stress tensors is defined as: 
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                                                                                    (2.5) 3,2,1,,0  kiug kiikik 
 
in which  gi  are the components of the momentum density  g  and  uk  the components of the 
velocity  u  of the matter. 

 
The connection between  g  and the energy flux  s,  is equal to: 
 

                                                                              2csg                                                             (2.6) 
 
where  c  denotes the speed of light (= 300.000 km/sec). 

 
Also, the total work done per unit time by elastic forces on the matter inside the closed surface  f  

can be given by the formula: 
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where the integration in the last integral is extended over the interior  υ  of the surface  f. 

 
Hence, the work done on an infinitesimal piece of matter of volume  δυ  is valid as: 
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Furthermore, (2.8) must be equal to the increase per unit time of the energy inside  δυ: 
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in which  h  denotes the total energy density, including the elastic energy and  tdd  is the 
substantial time derivative. 

 
Eq. (2.9) is valid as: 
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which finally leads to the relation: 
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Hence, the total energy flow is valid as: 
 

                                                                       )( σuhus                                                        (2.12) 
 
where    is a space vector with components  )( σu  ikik u  )( σu . 

 
 
Thus, the total momentum density can be written as: 
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in which 2ch   denotes the total mass density, including the mass of the elastic energy. 
 

From (2.5) and (2.13) we have: 
 

                                    ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u        (2.14) 
 
which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 
tensor (2.1) which is symmetrical. 

 

In the stationary frame  S0  the velocity    and so, from (2.5), (2.12) and (2.13) the 
following expressions are obtained: 

00 u

                             

                                                                                          (2.15) )3,2,1,(00  kikikiikik 
 
Additionally, the mechanical energy-momentum tensor satisfies the following relation: 
 

                                                                                                                             (2.16) ikik UhUT 0
 

where  Ui  is the four-velocity of the matter, in the Lorentz system and  . ),0,0,0(0 icU i 
 
So, the following scalar can be formed: 
 

                                             )( 1
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44
20002 xhTcUTUcUTU kikikiki                                   (2.17) 

 

with   the invariant rest energy density considered as a scalar function of the coordinates  
(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

)( 1
0 xh

 
Besides, by applying the tensor: 
 

                                                      2cUU kiikik                                           (2.18) 
 
which satisfies the relations: 
 
                                                                  0 kikiki UU                                               (2.19) 
 
then, the following symmetrical tensor can be formed: 
 
                                                                kimkmiik STS  11                                                   (2.20) 
 
which is orthogonal to  Ui: 
 
                                                                   0 kikiki USSU                                                     (2.21) 

 
 
By combining eqs. (2.16), (2.17) and (2.20) one obtains: 
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                                                                   20 cUUhTS kiikik                                               (2.22) 
 

Also, in the stationary system  S0  we have: 
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Eq. (2.22) may also be written as: 
 

                                                                         ikikik ST                                                         (2.24) 
where: 
 
                                                   kikiik UUcUUh 020                                    (2.25) 
 
is the kinetic energy-momentum tensor for an elastic body and: 
 
                                                                            200 ch                                               (2.26) 
 
is the proper mass density. 

 
Let us further introduce in every system  S  the quantity: 
 

                                                                 44 UUSS kiikik                                                (2.27) 
 
which, on account of (2.24) and (2.25) is valid as: 
 
                                                                  44 UUTT kiikik                                                (2.28) 

 
From (2.1) and (2.2) the three-tensor: 
 

                                                                         ikikikS   00

 
in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors  

 satisfy the orthonormality relations: )(0 jh
 
                                                                                                                       (2.29a) jej   0)(0)( hh
and: 
 
                                                                                                    (2.29b) )3,2,1,(0)(0)(   jhh ik

j
k

j
i

 

The eigenvalues  ,  the principal stresses, are the three roots of the following algebraic 

equation, where  λ  is the unknown: 

0
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The matrix    can be further written in terms of the eigenvalues and eigenvectors as: 0
ikS
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                                                                                                 (2.31) 0)(0)(0
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Thus, from eqs. (2.23) and (2.31) one obtains the following form of the stress four-tensor in  So: 
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Hence, in any system  S  one has: 
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From (2.24), (2.25), (2.27) and (2.33) follow the expressions:  
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By putting: 
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and introducing the notation    for the direct product of the vectors  a  and  b,  then eqn (2.35) 
can be written for the relative stress tensor  σ  as following: 
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Besides, the triad vectors    satisfy the tensor relations: )( j
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with  Δik  given by (2.18). 

 
If the stationary system  S0  for every event point is chosen in such a way that the spatial axes in 

S0 and in  S  have the same orientation, one has: 
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with:                       
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From (2.34) and (2.40) with  i = k = 4  follows: 
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In the stationary system, (2.37) reduces to:     
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onsequently, from (2.42) follows the transformation law for the energy density: 
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and the mass density: 
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rom (2.40) and (2.34) with  k = 4, we obtain the momentum density  g  with the components  F

icTi4 : gi
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 addition, from (2.40) and (2.35) one has the relative stress tensor: 
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 the special case  u = (u,0,0),  where the notation of the matter at the point considered is 
par

     

In
allel to the x1-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47) 
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nd the relative stress tensor gives the Universal Equation of Elasticity: 
 
a
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in which  γ  is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not 
symmetrical, in contrast to the absolute stress tensor which is symmetrical. 
 
 
3. Universal Equation of Thermo-Elasticity for Future Spacecraft by Relativistic Thermo-

Elasticity   
In the previous paragraphs the system under investigation, which is the elastic body, was 

regarded as a purely mechanical system. However, all macroscopic systems are in reality thermo-
dynamical systems with properties depending on non-mechanical variables such as the proper 
temperature T o, and so the question which arises is to what kind of thermodynamical processes 
may be described by an energy-momentum tensor. 
 

Thus, it is clear that all properties in which heat energy is transferred from one part of the 
system to another are excluded, for heat flow in the manner would give rise to a non-vanishing 
energy current in the rest system.  
 

Let us further consider a general system of continuously distributed ponderable or visible 
matter, inside which invisible heat conduction can take place, while the motion of the visible matter 
is described by the four-velocity  .  Then the energy-momentum tensor of the general system 
can be given by the following relation: 

iU

                                      ikikik HMT                                                               (3.1) 

in which    denotes the mechanical part of the energy-momentum tensor and    the heat 
part. 

ikM ikH

 
In addition, the mechanical part    is valid by the following formula:   ikM

 
                                                ikkiik ScUUdM  20                                             (3.2) 

 
and the heat part:    
 

                                                    2cUVVUH kikiik                                                       (3.3) 
 
where the four-vector    satisfies the relation:    iV
 

                                                                                         (3.4) ikikjkjiki UdUTUTV 0

 

in which    denote the normalized eigenvectors,  0d ik   is the tensor given by  (2.18)  and    the 
potential part of the energy momentum tensor. 

ikP
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The four-vector    is orthogonal to  :    iV iU

                                                             0ii VU                                                         (3.5) 
and so we obtain: 

                                              ciVi uVV ,,                                                         (3.6) 

where  u   denotes the velocity of the matter. 
 

Thus, in the stationary system, (3.6) reduces to:   
 

                                                                  0,00 ViV                                                              (3.7) 
    

In addition, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have instead of 
(2.22): 

 
                                   220 cUVVUcUUdTS kikikiikik                                  (3.8) 

 
Hence, from (3.8) follows the required relation (3.1), instead of (2.24). 

 
Let us further consider the general system of continuously matter described previously inside 

which invisible heat conduction can take place, while the motion of the matter is described by the 
four-velocity    or by the velocity  . iU iu

 
 Then, for the connection between the energy-momentum tensor    and the relative stress 

tensor 
ikT

ik  of the general system, the following relation is valid:   
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with:    
 
                                             icUUVVU kkk 444                                                    (3.10) 
 
where    denotes the four-vector given by (3.4),    the momentum density and  c  the speed of 
light. 

kV ig

 
The quantity  k   seems to be the most important part of  ik :    

 
                         2

4444 cUUVVUUUHH kkikiikik                                (3.11) 
 
Furthermore, k  can be written by the following form by using (2.41) and (3.6):   

 
                                                  0,ξk                                                       (3.12) 

with:    
 

                                                 2, cuVuVξ                                                                  (3.13) 
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In the stationary system,    is equal to the heat current density  :   0ξ 0V

                                                                                                                 (3.14) 00 Vξ 
    
By combining (3.10) and (3.11), then we have:   

 
                                                     2cU kiik                                             (3.15) 
   

Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one obtains:   
 
                                 2

44 cUUUTT kiikikikkiik                     (3.16) 
 
which finally reduces to the required formula (3.9). 
 

Also, consider the general system of continuously matter, inside which invisible heat 
conduction can take place. Then the momentum density  g  of this system is given by the Universal 
Equation of Thermo-Elasticity: 

                                          
 

22

,

cc
m

ξσu
ug                                                      (3.17) 

in which  u  denotes the velocity of the matter at the place and time considered,  σ  the relative 

stress tensor,  ξ  is given by (3.13) and    is the total mass density. 2/ cEm 
 

From (3.9), one obtains for the energy current density:   
 
                                                   kikikk uEuD                                            (3.18) 

which can be further written as:   
 
                                                                        ξσuuD  ,E                                                   (3.19) 

  
So, from (3.19) by using the formula of the momentum density  g:   
 
                                                       2cDg                                                        (3.20) 

 
we obtain the required relation (3.17) which is a generalization, for a general system with heat 
conduction. 
 
 
4. Universal Mechanics by Elastic Stress Analysis for Future Spacecraft 

Let us consider the stationary frame of Fig. 1 with  Γ1  the portion of the boundary of the body 
on which displacements are presented,  Γ2  the surface of the body on which the force tractions are 
employed and  Γ  the total surface of the body equal to  Γ1+Γ2. 

 
In addition, for the principal of virtual displacements, for linear elastic problems then the 

following formula is valid:  
 

                                     



2

d)(d)( 0
, kkkkkjjk uppub                                     (4.1) 
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where  uk  are the virtual displacements, satisfying the homogeneous boundary conditions  0ku   
on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  of the body. (Fig. 3) 
 

 

Fig. 3 The stationary system  S . 0

 
 
Eqn (4.1) can be further written as following if  uk  do not satisfy the previous conditions on  Γ1: 
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in which    are the surface tractions corresponding to the  uk  system. 0
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Then, by integrating (4.2) follows: 
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where jk   are the strains. 

 
By a second integration then (4.3) reduces to: 
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Besides, a fundamental solution should be found, satisfying the equilibrium equations, of the 

following type: 
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where    denotes the Dirac delta function which represents a unit load at  i  in the  l  direction. i
l
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The fundamental solution for a three-dimensional isotropic body is: [31] 
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in which  G denotes the shear modulus,  v  Poisson’s ratio,  n  the normal to the surface of the body,  

lk   Kronecker’s delta,  r  the distance from the point of application of the load to the point under 

consideration and  nj  the direction cosines (Fig.3). 
 

The displacements at a point are given by the formula: 
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Hence, (4.7) takes the following form for the  “l”  component: 
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By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 

medium: 
 

                                                         














i

j

j

i

l

l
ijij x

u

x

u
G

x

u

v

Gv











21

20                                  (4.9) 

 
Furthermore, after carrying out the differentiation one has: 
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Eq. (4.10) can be further written as follows: 
 

               

                                                                            (4.11) 


 ddd0
kkijkkijkkijij bDuSpD

 
where the third order tensor components  Dkij  and  Skij  are: 
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Finally, because of eqs (2.49) and (4.11) by considering the moving system  S  of Fig. 2, then 

the stress-tensor reduces to the following form: 
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in which    are given by. (4.11) to (4.13). 0
ij

 
Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values of the velocity  u  of 

the moving aerospace structure: 
 

Table 1 

Velocity  u   1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000 km/h 1.000000001    0.800c    1.666666667 
100,000 km/h 1.000000004    0.900c    2.294157339 
200,000 km/h 1.000000017    0.950c    3.202563076 
500,000 km/h 1.000000107    0.990c    7.088812050 
10Ε+06  km/h 1.000000429    0.999c    22.36627204 
10Ε+07  km/h 1.000042870     0.9999c     70.71244596 
10Ε+08  km/h 1.004314456     0.99999c     223.6073568 
2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 
         c/3 1.060660172     0.9999999c     2236.067978 
         c/2 1.154700538     0.99999999c     7071.067812 
        2c/3 1.341640786     0.999999999c     22360.67978 
        3c/4 1.511857892 c      

 
So, from Table 1 follows that for small velocities 50,000 km/h  to  200,000 km/h, the absolute 

and the relative stress tensor are nearly the same. On the contrary, for bigger velocities like  c/3, c/2  
or  3c/4  (c = speed of light), the variable  γ  takes values more than the unit and thus, relative stress 
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tensor is very different from the absolute one. In addition, for values of the velocity for the moving 
structure near the speed of light, the variable  γ  takes bigger values, while when the velocity is 
equal to the speed of light, then  γ  tends to the infinity. 

Thus, the Singular Integral Operators Method (S.I.O.M.) as was proposed by E.G.Ladopoulos 
[4], [8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for the numerical 
evaluation of the stress tensor (3.11), for every specific case.  
 

5. Universal Stress Intensity Factors for Future Spacecraft by Theory of Relativistic Fracture 

Mechanics  
We consider a stationary frame for elastic materials in an in-plane loaded plate. Then,  the first 

and second mode stress intensity factors are given by the formulas (Fig.4): [64] 
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Fig. 4 2-D Coordinates near the crack tip. 
 
Additionally, the relative first and second mode stress intensity factors for the airframes are 

equal to: 
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Thus, because of (4.14), eqs (5.3) and (5.4) can be written as: 
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Furthermore, the first, second and third mode stress intensity factors in the stationary frame for 

elastic materials in a 3-D solid are given by the relations (Fig.5): [65] 
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Fig. 5 3-D Coordinates near the crack tip. 
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Hence, because of (4.14), eqs (5.10) n be written as: 
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By eqs (5.13), (5.14) and (5.15) are given the Universal Stress Intensity Factors. Hence, from 

eqs (5.13) to (5.15) follows that the relative first and third mode stress intensity factors are the 
same for both stationary and moving frames, while the relative second mode stress intensity factor 
is much different in the above frames. All the relative stress intensity factors (first, second and 
third) are important for the fracture mechanics analysis of the future spacecraft, as for their fracture 
mechanics analysis a combination of all the three intensity factors should be used [66]. So, because 
of the above difference of the stress intensity factors, follows that the fracture behavior of the new 
entury spacecraft would be much different and thus special materials should be used for their 

 

 

c
construction.  

6. Conclusions 
By the current research in the area of aerospace and aeronautical technologies the theory of 

“Universal Mechanics” has been investigated and applied for the design of the future spacecraft 
moving with very high speeds, even approaching the speed of light, as the plan of the International 
Space Agencies is to achieve such spacecraft in the future. The future investigation concerns to the
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det

rence between the two stress tensors is very much increased. 
“U

ns. Such a stress tensor is reduced to the 
olution of a multidimensional singular integral equation and for its numerical evaluation will be 

ular Integral Operators Method (S.I.O.M.). 

oulos E.G., ‘New aspects for the generalization of the Sokhotski – Plemelj formulae for the 

ear cracks’, Indus. Math., 39 (1989), 113 – 134. 

45 – 454. 

ermination of the proper composite  materials or any other kind of materials for the construction 
of the next generation spacecraft, as usual composite solids are not suitable for such constructions. 

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of 
Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable 
difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000 
km/h. For bigger speeds the diffe

niversal Mechanics” results as a combination of the theories of "Relativistic Elasticity" and 
"Relativistic Thermo-Elasticity".   

Hence, for the structural design of the future spacecraft will be used the stress tensor of the 
airframe in combination to the singular integral equatio
s
used the Sing
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