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Abstract

For the design of the new generation spacecraft of any speed, the groundbreaking theory of
“Universal Mechanics” is further investigated. The proposed theory of “Universal Mechanics”
consists to the combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-
Elasticity”. Hence, according to the above theories there is a considerable difference between the
absolute stress tensor and the stress tensor of the airframe even in low speeds. Besides, for bigger
speeds of the new generation spacecraft, like c/3, ¢/2 or 3c/4 (c=speed of light), then the difference
between the two stress tensors is very much increased. So, for the new generation spacecraft with
very high speeds, the relative stress tensor will be very much different than the absolute stress
tensor. Additionally, for velocities near the speed of light, then the values of the relative stress
tensor are very much bigger than the corresponding values of the absolute stress tensor. Our theory
will still exist even once in the very future somebody will prove that the speed of light is not the
maximum speed in nature. The above new generation spacecraft will be moving by using laser
engines. The theory of “Relativistic Elasticity” is a combination between the theories of "Classical
Elasticity” and "Special Relativity" and results in the “Universal Equation of Elasticity”. Besides,
the theory of “Relativistic Thermo-Elasticity” is a combination between the theories of "Classical
Thermo-Elasticity” and "Special Relativity" and results in the “Universal Equation of Thermo-
Elasticity”. The "structural design” of super speed vehicles requires the consideration of mass
pulsation and energy-mass interaction at high velocity space-time scale, as the relative stress
intensity factors are different than the corresponding absolute stress intensity factors. Such theory
results in the "Universal Stress Intensity Factors™. Thus, the “Universal Equation of Elasticity”,
the “Universal Equation of Thermo-Elasticity” and the "Universal Stress Intensity Factors" are
parts of the general theory of “Universal Mechanics”.
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1. Universal Mechanics for New Generation Spacecraft

In the near future the International Space Agencies should effect a competitive technological
advantage in several strategic areas of new and rapidly developing advanced technologies. Thus,
the scope by the big Space Agencies is to achieve in the future, an absolute spacecraft moving with
very high speeds, even approaching the speed of light. Consequently, how far could be this future ?
According to the present study and research such future could be much closer than everybody
believes.

For the future spacecraft the relative stress tensor will be much different than the absolute stress
tensor and so special solid should be used for the construction of the next generation spacecraft.

On the other hand, the suitable choice of the solid which should be used for the construction of
the absolute spacecraft is under investigation, but such solid will be very much different than the
usual composite materials.
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Also, in order the next generation spacecraft to achieve very high speed, even approaching the
speed of light, then such new generation spacecraft should be moving by using laser engines. Laser
is light and so their speed is the speed of light. Thus, the use of laser engines for the future
spacecraft would be the best device.

Hence, we will show that there is a significant difference between the absolute stress tensor and
the stress tensor of the airframe even for low speeds. Furthermore, for bigger speeds the difference
of the two stress tensors will be very much increased. Thus, for bigger velocities like ¢/3, ¢/2 or
3c/4 (c=speed of light) the relative stress tensor is very much different than the absolute one and for
velocities near the speed of light the values of the relative stress tensor are much bigger than the
corresponding values of the absolute stress tensor. After the speed of light an energy world would
appear. The study of the connection between the stress tensors of the absolute frame and the
airframe is included in the theory proposed by E.G.Ladopoulos [30] - [34] under the term
“Relativistic Elasticity” and “Relativistic Thermo-Elasticity” and the final formula which results
from the above theories is called the “Universal Equation of Elasticity” and the “Universal
Equation of Thermo-Elasticity”, correspondingly. Furthermore, both theories of “Relativistic
Elasticity” and “Relativistic Thermo-Elasticity” are included in a more general theory under the
term “Universal Mechanics”.

One more question is the following: What happens with our theory if somebody in the very
future proves that the speed of light is not the maximum speed in the whole universe, but there is
another type of energy with higher speed ? The answer is that our theory of “Universal Mechanics”
will valid over the centuries and the milleniums, as the spacecraft when reaching the speed of light
then becomes energy and will not be mass any more. Hence, after the speed of light there is no
mass available, but only energy. According to NASA the Large and Small Magellanic clouds were
thought to be the closest galaxies to ours, until 1994, when the Sagittarius Dwarf Elliptical Galaxy
(SagDEG) was discovered. In 2003, the Canis Major Dwarf Galaxy was discovered - this is now
the closest known galaxy to ours. Consequently, The Canis Major Dwarf Galaxy is only 25,000
light years from the Sun, and 42,000 light years from the Galactic center. It too, is well-hidden by
the dust in the plane of the Milky Way - which is why it wasn't discovered until recently. To get to
the closest galaxy to ours, the Canis Major Dwarf, at VVoyager's speed, it would take approximately
749,000,000 years to travel the distance of 25,000 light years! If we could travel at the speed of
light, it would still take 25,000 years. On the other hand, the galaxy MACS0647-JD appears very
young and is only a fraction of the size of our own Milky Way. The galaxy is about 13.3 billion
light-years from Earth, the farthest galaxy yet known, and formed 420 million years after the Big
Bang. The universe itself is only 13.7 billion years old, so this galaxy's light has been traveling
toward us for almost the whole history of space and time.

Beyond the above, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed
singular integral equation methods applied to elasticity, plasticity and fracture mechanics theories.
In the above mentioned publications the Singular Integral Operators Method (S.1.O.M.) is
proposed for the numerical solution of the multidimensional singular integral equations in which
the stress tensor analysis of the linear elastic theory is reduced. In addition, the theory of linear
singular integral equations was extended to non-linear singular integral equations, too. [23]-[29].
Thus, the theory of “Universal Mechanics” and correspondingly the theories of “Relativistic
Elasticizy” and “Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress
analysis of the airframes.

Also, the classical theory of elastic stress analysis and thermo-elastic stress analysis began to be
analyzed in the early nineteenth century and was further developed during the twentieth century. In
the past, several important monographs were published on the classical theory of elasticity and
thermo-elasticity. [35]-[54].

During the past years special attention has been given, by many scientists worldwide, on the
theoretical aspects of the special theory of relativity. Thus, some classical monographs were
written, dealing with the theoretical foundations and investigations of the special and the general
theory of relativity. [55]-[62]. Moreover, by the present research we will show that the "relative
stress tensor is not symmetrical”, while, as it is well known, the "absolute stress tensor is
symmetrical”. Such a difference is very important for the design of the future aircraft and
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spacecraft of very high speeds. Finally, the "structural design" of super speed vehicles requires the
consideration of mass pulsation [63], [64] and energy-mass interaction [65]-[70] at high velocity
space-time scale.

2. Universal Equation of Elasticity for New Generation Spacecraft by Relativistic Elasticity

Consider the state of stress at a point in the stationary frame S°, defined by the following
symmetrical stress tensor: (Fig.1)

0 0 0
O Opp Oy
o _| o 0 0
O =|0y 0Oy Op (2.1)

) 0 0 0 0 0 0
where: Oy =0),,03 =03,03, =0x (2.2)

Additionally, consider an infinitesimal face element df with a directed normal, defined by a
unit vector n, at definite point p in the three-space of a Lorenz system. The matter on either side
of this face element experiences a force which is proportional to df.

Fig. 1 The state of stress ¢} in the stationary system S°.

Thus, the force is valid as:
do(n) =o(n)d f (2.3)

The components oi(n) of e(n) are linear functions of the components n, of n:
o,m)=oyun, i,k=123 (2.4)

where oy is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space
part 0'3( of the total energy-momentum tensor Ty, referred as the absolute stress tensor. [55],

[56] (Fig. 2).
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Fig. 2 The state of stress aiok in the stationary system S © and o in the airframe system with velocity u
parallel to the x ; - axis.

Also, the connection between the absolute and relative stress tensors is defined as:
oy =0, +gu,, k=123 (2.5)

where ¢; are the components of the momentum density g and u, the components of the velocity
u of the matter.

The connection between g and the energy flux s, is equal to:

g= s/c2 (2.6)
in which c denotes the speed of light (= 300.000 km/sec).

Furthermore, the total work done per unit time by elastic forces on the matter inside the closed
surface f can be given by the formula:

l9(ul O )

W= f o(n)-u)d f = ja,knku df = j v, i k=123 2.7)

where the integration in the last integral is extended over the interior » of the surface f.
Hence, the work done on an infinitesimal piece of matter of volume dJv is valid as:

_ o) o

W = 2.8
5, (2.8)
Besides, (2.8) must be equal to the increase per unit time of the energy inside ov:
i(hé‘u) =W (2.9)
dt '
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where h denotes the total energy density, including the elastic energy and d/dt is the substantial
time derivative.

Eqg. (2.9) is valid as:

9
ey = 23 N enoo 219 S Gy s (2.10)
d¢ 9t Sx, 9x, 9t Ox,
which finally leads to the relation:
%-ﬁ-i(l’lu +u,0,)=0 (2.11)
9 9x, k i9ik .
Hence, the total energy flow is valid as:
s=hu+(u-o0) (2.12)

where (u-6) isaspace vector with components (u-o6), =u,0y .

So, the total momentum density can be written as:

S u-o
gz—zzll,lll‘f‘% (213)
c c

where 1 =h/c? denotes the total mass density, including the mass of the elastic energy.
From (2.5) and (2.13) one has:
Oy =0 = =gty + gt; =[~(u-6),u; +(u-0),u,]/c* #0 (2.14)

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress
tensor (2.1) which is symmetrical.

In the stationary frame S° the velocity «° =0 and so, from (2.5), (2.12) and (2.13) the
following expressions are obtained:

oy =0, =0, =0y (iL,k=123) (2.15)

In addition, the mechanical energy-momentum tensor satisfies the following relation:

T, U, =-h'U, (2.16)
where U; is the four-velocity of the matter, in the Lorentz system and Ui0 =(0,0,0,ic) .
Thus, the following scalar can be formed:
UTU,/c¢* =UTU? [c* =-TY = h°(x,) (2.17)
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with 7#°(x,) the invariant rest energy density considered as a scalar function of the coordinates

(%) (i=1,23) in S. (Fig. 2)
Moreover, by applying the tensor:
Ay =6, +UU, /c?
which satisfies the relations:
UA, =AU, =0

then, the following symmetrical tensor can be formed:

Sik = AilTlmAmk = Ski

which is orthogonal to U;:
UiSi =83U; =0
By combining egs. (2.16), (2.17) and (2.20) we have:
Su =Ty _hOUiUk /C2

Furthermore, in the stationary system S, we obtain:

0o _ o0 _ 0 _ o0 _
Sy =04 =04,8,=58;,=0

Eqg. (2.22) may also be written as:

Ty =S&u + Sy
where:

S = hOUiUk /02 = /UOUiUk

is the kinetic energy-momentum tensor for an elastic body and:
u’ = ho/c2
is the proper mass density.
We further introduce in every system S the quantity:
oy =S —S,U, /U,
which, on account of (2.24) and (2.25) is valid as:
oy =T —T,U, /U,

From (2.1) and (2.2) the three-tensor:

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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0o _ o0 _
Si =0y =0y

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors
h°Y satisfy the orthonormality relations:

R0 p@0 _ sie (2.29a)
and:

RO =5 (j,p=123) (2.29b)

The eigenvalues pfj), the principal stresses, are the three roots of the following algebraic
equation, where 1 is the unknown:

S8 =28, |=|of =45, |=0 (2.30)

The matrix S; can be further written in terms of the eigenvalues and eigenvectors as:

Sy =0y = plyh '’ (2.31)
Thus, from egs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in S°:
Sy = plyh n° (2.32)
Consequently, in any system S one obtains:
Sy =pnh"h (2.33)

From (2.24), (2.25), (2.27) and (2.33) follow the expressions:

Ty = i'UU + pyh (2.34)
oy =Sy —SuUs /Uy = P(Oj)hlgj) (hlgj) +ihyu, /C) (2.35)

By putting:
hi(j) — (h(j),hij)) (236)

and introducing the notation aeb for the direct product of the vectors a and b, then egn (2.35)
can be written for the relative stress tensor ¢ as following:

o= P?j{h”) «h!” +£hi”(h”) -u)},j =123 (2.37)

Furthermore, the triad vectors h{? satisfy the tensor relations:
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WD R = 5ir (2.38)
hORD = A, (2.39)

with 4; given by (2.18).

If the stationary system S° for every event point is chosen in such a way that the spatial axes in
S%and in S have the same orientation, we have:

h =h?° + fu(u-h")(y - 1)}/u

(2.40)
h =iu-hY° y/c
with:
y =1/ —u?/c*)"? (2.41)
From (2.34) and (2.40) with i =k =4 follows:
h==Ty ==1"U; = p{y(u-h%)? . 2 /c? (2.42)
In the stationary system, (2.37) reduces to:
¢’ = p?j) (h(f)o oh”’o) (2.43)
Thus, from (2.42) follows the transformation law for the energy density:
1’ +u-o’ -u/c2
h= 2/ 2
1-u /c
(2.44)
u-c’-u= u[oﬁuk
and the mass density:
0 0 4
_M tue u/c (2.45)

# l—uz/c2

From (2.40) and (2.34) with k = 4, we obtain the momentum density g with the components
g =Ty /iC:

g=u[h° +u-c’ -u(l—y’l)/uz]yz/c2 +(o° -u)y/c2

(2.46)
(6" w), =oqu,
Besides, from (2.40) and (2.35) we have the relative stress tensor:
6=c¢"+ue(c’ -u)y-1)/u’-(c’ -u)ou(y/—l)/;/u2
(2.47)

~(ueu)u-6”-u)(y -7/’
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In the special case u = (u,0,0), where the notation of the matter at the point considered is
parallel to the x;-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47)
reduce to:

o

2
(i)

0
7{#0 +G—§1Ju
C

gy =
(2.48)
0
_ Yo
X 02
0
Y03
gx3 - 02
and the relative stress tensor gives the Universal Equation of Elasticity:
0 0 0
o, O Op On 10 )O3
1
0 0 0
60=10y Oypn O |=| "0 Opn Op (2.49)
031 O3 O3 1
0 0 0
—03 O3 O3

where y is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not
symmetrical, in contrast to the absolute stress tensor which is symmetrical.

3. Universal Equation of Thermo-Elasticity for New Generation Spacecraft by Relativistic
Thermo-Elasticity

In the previous paragraphs the system under investigation, which is the elastic body, was
regarded as a purely mechanical system. However, all macroscopic systems are in reality thermo-
dynamical systems with properties depending on non-mechanical variables such as the proper
temperature T °, and so the question which arises is to what kind of thermodynamical processes
may be described by an energy-momentum tensor.

Consequently, it is clear that all properties in which heat energy is transferred from one part of
the system to another are excluded, for heat flow in the manner would give rise to a non-vanishing
energy current in the rest system.

Consider further a general system of continuously distributed ponderable or visible matter,

inside which invisible heat conduction can take place, while the motion of the visible matter is
described by the four-velocity U,. Then the energy-momentum tensor of the general system can

be given by the following relation:

Ty =M, +H, (3.1)

where M, denotes the mechanical part of the energy-momentum tensor and #, the heat part.
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Also, the mechanical part A7, is valid by the following formula:
M, =d°U,U, [c* +S, 3.2)
and the heat part:
H, =UV, +VU,)/c* (3.3)
where the four-vector V; satisfies the relation:

Vi==A,T;U; =-T, U, _dOUi (34)

g J

where d° denote the normalized eigenvectors, A, is the tensor given by (2.18) and P, the
potential part of the energy momentum tensor.
The four-vector V; is orthogonal to U,:

UV =0 (3.5)
and so one has:

Vv, =(V,i(V,u)/c) (3.6)

where U denotes the velocity of the matter.
So, in the stationary system, (3.6) reduces to:
v =(v°.0) 3.7)

Additionally, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have instead of
(2.22):

Sy =Ty —d"U, Uk/C2 _(Uin + ViUk)/CZ (3.8)
Hence, from (3.8) follows the required relation (3.1), instead of (2.24).
Let us further consider the general system of continuously matter described previously inside

which invisible heat conduction can take place, while the motion of the matter is described by the
four-velocity U, or by the velocity u, .

Then, for the connection between the energy-momentum tensor 7, and the relative stress
tensor o, of the general system, the following relation is valid:

Ty =gu, oy +u; & /Cz (3.9)
with:

& =U,(V, -V, U, U, ) ic (3.10)
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where ¥, denotes the four-vector given by (3.4), g, the momentum density and c the speed of
light.

The quantity &, seems to be the most important part of &, :

égik=Hik_Hi4Uk/U4=Ui(Vk_V4Uk/U4)/Cz (3.11)
Moreover, &, can be written by the following form by using (2.41) and (3.6):

& =(&0) (3.12)
with:

g=y[V-u(V,u)/c’] (3.13)

In the stationary system, &° is equal to the heat current density V°:
g'=v° (3.14)

By combining (3.10) and (3.11), then we obtain:
& =U, & re? (3.15)
Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one has:
T, T, U, JU, =0, +& =0, +U, &, [ c? (3.16)
which finally reduces to the required formula (3.9).

Furthermore, consider the general system of continuously matter, inside which invisible heat
conduction can take place. Then the momentum density g of this system is given by the Universal
Equation of Thermo-Elasticity:

gzmujh—(llc’f)jtci2 (3.17)

where u denotes the velocity of the matter at the place and time considered, ¢ the relative stress
tensor, & is given by (3.13)and m = E/c?* is the total mass density.

From (3.9), we obtain for the energy current density:

D, =Eu, +u,c, +¢&, (3.18)
which can be further written as:

D=Eu+(u,c)+§ (3.19)

So, from (3.19) by using the formula of the momentum density g:
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g=D/c’ (3.20)

we obtain the required relation (3.17) which is a generalization, for a general system with heat
conduction.

4. Universal Mechanics by Elastic Stress Analysis for New Generation Spacecraft

Let us consider the stationary frame of Fig. 1 with 77 the portion of the boundary of the body
on which displacements are presented, /7, the surface of the body on which the force tractions are
employed and I" the total surface of the body equal to I'j+7%.

Furthermore, for the principal of virtual displacements, for linear elastic problems then the
following formula is valid:

J‘(O-;)kﬁj +b)u, dQ = .[(pk _l_7k Ju;, dT” (4.2)
Q

B

where uy are the virtual displacements, satisfying the homogeneous boundary conditions ur =0
on 77, b the body forces (Fig. 1) and py the surface tractions at the point k of the body. (Fig. 3)

Fig. 3 The stationary system S©.

Eqgn (4.1) can be further written as following if u, do not satisfy the previous conditions on 77:

[ @5 +bou, dQ= [(p = pu, dT + [ (e —u,)p, AT (4.2)
Q

1—2 1—‘1
where p, =n jafk are the surface tractions corresponding to the u, system.

Then, by integrating (4.2) follows:

[Bau, d0=[ o2, dQ=~[ B, dT = [ poas AT+ [ @ —u,)p, AT (4.3)
Q Q

5} L L
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in which &, are the strains.
By a second integration then (4.3) reduces to:

[bou, do+ [0, ju, d0=
Q Q

~ [ pewcdT = [ pou, dT + [uip, dT + [u, p, dT (4.4)

I O Iy I

Additionally, a fundamental solution should be found, satisfying the equilibrium equations, of
the following type:

o TN =0 (4.5)

where A’, denotes the Dirac delta function which represents a unit load at i inthe | direction.

The fundamental solution for a three-dimensional isotropic body is: [31]

Uy -1 (B-4)A, +ﬂi
1672G(1—v)r 9, 9,
* 1 Sr 9 9
= —|(1-2v)A, +3——— |- 4.6
P 87(1— vy {871 {( DA i 9, Sxk} (4.6)

_a_zv{ﬁnk_in,ﬂ
O, O,

where G denotes the shear modulus, v Poisson’s ratio, n the normal to the surface of the body,
A, Kronecker’s delta, r the distance from the point of application of the load to the point under
consideration and n; the direction cosines (Fig.3).

The displacements at a point are given by the formula:

u' :J.updr—_[pudr+jbud§2 4.7
r r Q

Hence, (4.7) takes the following form for the “I” component:

u,’ =ju,kpk dF—Ip,kude+Ibkulk dQ (4.8)
r Q

r

By differentiating u at the internal points, one obtains the stress-tensor for an isotropic
medium:

T
qu = 2Gv Ai‘ %-FG %-I-L (49)
To1-2v 7 Yy, S, S

J 1

Moreover, after carrying out the differentiation we have:
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o Yu,
I 26v_ o A; gulk +G Shuge , A p,dl+
TI1-2v 7 G &,
19u

j 26y p P gl M b, dQ— (4.10)
Sl 1-2v Ay 9,
J‘ 2Gv 19P1k+ ‘gptk

L 1-2v Ai K, &,

Eqg. (4.10) can be further written as follows:

J’_

o =jDky.pkdr—jSky.ukdr+jDkyb do (4.11)
r r
where the third order tensor components Dy and Sy; are:
1
ki = 872'(1—\/') 2 [(I—ZV)[Akl}’J +Ak1rt Ay’tk]+3rlr]rk:| (412)
G
i :—{ Sla=20A, e + 9By, +A ) =5rr |
T Az(-v)?
+3v(nrry +nrr )+ A=20)Cmrr; +n,A, +nA ) —(1=4v)n A, (4.13)
with: r, -
T O,

1

Finally, because of egs (2.49) and (4.11) by considering the moving system S of Fig. 2, then
the stress-tensor reduces to the following form:

Oy =0y
O =70,
013 =103
O :lo-gl
e
0,y =0% (4.14)
O3 20'33
O3 :ldf?l
e
O3 :O';)z
O33 2523

where o are given by. (4.11) to (4.13).

Table 1 shows the values of y as given by (2.41) for some arbitrary values of the velocity u of
the moving aerospace structure:
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Table 1

Velocity u ¥ :J/,/l— u?/c? Velocity u ¥ :J/,/l—uz/c2
50,000 km/h  1.000000001 0.800c 1.666666667
100,000 km/h  1.000000004 0.900c 2.294157339
200,000 km/h  1.000000017 0.950c 3.202563076
500,000 km/h  1.000000107 0.990c 7.088812050
10E+06 km/h  1.000000429 0.999¢c 22.36627204
10E+07 km/h  1.000042870 0.9999¢c 70.71244596
10E+08 km/h  1.004314456 0.99999¢c 223.6073568
2x10E+8 km/h  1.017600788 0.999999¢c 707.1067812
c/3 1.060660172 0.9999999¢c 2236.067978
c/2  1.154700538 0.99999999¢ 7071.067812
2c/3  1.341640786 0.999999999¢ 22360.67978

3c/4  1.511857892 c ®

Thus, from Table 1 follows that for small velocities 50,000 km/h to 200,000 km/h, the absolute
and the relative stress tensor are nearly the same. On the contrary, for bigger velocities like ¢/3, ¢/2
or 3c/4 (c = speed of light), the variable y takes values more than the unit and thus, relative stress
tensor is very different from the absolute one. Also, for values of the velocity for the moving
structure near the speed of light, the variable y takes bigger values, while when the velocity is
equal to the speed of light, then y tends to the infinity.

Thus, the Singular Integral Operators Method (S.1.0.M.) as was proposed by E.G.Ladopoulos
[41, 8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for the numerical
calculation of the stress tensor (3.11), for every specific case.

5. Universal Stress Intensity Factors for New Generation Spacecraft by Theory of Relativistic
Fracture Mechanics

Consider a stationary frame for elastic materials in an in-plane loaded plate. Then, the first and
second mode stress intensity factors are given by the formulas (Fig.4): [66]

K} = lim |2, 0%, | (5.1)

x;—0

Ky = 1}11_1)10{,/27Dc1 0102} (5.2)

XS

Crack Surfaces J—' o

Fig. 4 2-D Coordinates near the crack tip.
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Besides, the relative first and second mode stress intensity factors for the airframes are equal
to:
K, = lim{ 27, 0'22} (5.3)

x;—0

Ky = }ir_{lo{\/ 27,04, } (5.4)
Hence, because of (4.14), egs (5.3) and (5.4) can be written as:

K, = lim {\/%0'32} (5.5)

x;—0
Ky, =(11ir_r>10{v2ile 7‘7102} (5.6)

Moreover, the first, second and third mode stress intensity factors in the stationary frame for
elastic materials in a 3-D solid are given by the relations (Fig.5): [67]

K? = lim |27, 0% | (5.7)

x>0
Ky = (}lil_r)lo{v 20, oy, } (5.8)
Ky = }lir_{lo{\/ 270,053 } (5.9)
X3

Crack Surfaces

{
Normal Plane

Fig. 5 3-D Coordinates near the crack tip.

In addition, the relative first, second and third mode stress intensity factors for the airframes
are equal to:

K, = milo{ 27,0, | (5.10)
Ky, = ETO{\/%GQ} (5.11)
Ky = }F}O{Mo'zs } (5.12)

Hence, because of (4.14), egs (5.10), (5.11) and (5.12) can be written as:

K, = lim {2, 0% | (5.13)

x;—=0
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K, = 1113)10{ e, 7ol | (5.14)
Ky = l}ir_{lo{\/ 276,053 } (5.15)

By egs (5.13), (5.14) and (5.15) are given the Universal Stress Intensity Factors. Consequently,
from egs (5.13) to (5.15) follows that the relative first and third mode stress intensity factors are the
same for both stationary and moving frames, while the relative second mode stress intensity factor
is much different in the above frames. All the relative stress intensity factors (first, second and
third) are important for the fracture mechanics analysis of the future spacecraft, as for their fracture
mechanics analysis a combination of all the three intensity factors should be used [68]. Thus,
because of the above difference of the stress intensity factors, follows that the fracture behavior of
the new century spacecraft would be much different and thus special materials should be used for
their construction.

6. Conclusions

By the present research in the area of aerospace and aeronautical technologies the theory of
“Universal Mechanics” has been further studied and applied for the design of the next generation
spacecraft moving with very high speeds, even approaching the speed of light, as the plan of the
International Space Agencies is to achieve such spacecraft in the future. The future investigation
concerns to the determination of the proper composite materials or any other kind of materials for
the construction of the next generation spacecraft, as usual composite solids are not suitable for
such constructions.

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of
Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable
difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000
km/h. For bigger speeds the difference between the two stress tensors is very much increased.
“Universal Mechanics” results as a combination of the theories of "Relativistic Elasticity” and
"Relativistic Thermo-Elasticity".

Hence, for the structural design of the new generation spacecraft the stress tensor of the airframe
will be used in combination to the singular integral equations. Such a stress tensor is reduced to the
solution of a multidimensional singular integral equation and for its numerical solution the Singular
Integral Operators Method (S.1.0.M.) will be used.
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