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Abstract 

For the design of the new generation spacecraft of any speed, the groundbreaking theory of 

“Universal Mechanics” is further investigated. The proposed theory of “Universal Mechanics” 

consists to the combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-

Elasticity”. Hence, according to the above theories there is a considerable difference between the 

absolute stress tensor and the stress tensor of the airframe even in low speeds. Besides, for bigger 

speeds of the new  generation spacecraft, like c/3, c/2 or 3c/4 (c=speed of light), then the difference 

between the two stress tensors is very much increased. So, for the new generation spacecraft with 

very high speeds, the relative stress tensor will be very much different than the absolute stress 

tensor. Additionally, for velocities near the speed of light, then the values of the relative stress 

tensor are very much bigger than the corresponding values of the absolute stress tensor. Our theory 

will still exist even once in the very future somebody will prove that the speed of light is not the 

maximum speed in nature. The above new generation spacecraft will be moving by using laser 

engines. The theory of “Relativistic Elasticity” is a combination between the theories of "Classical 

Elasticity" and "Special Relativity" and results in the “Universal Equation of Elasticity”. Besides, 

the theory of “Relativistic Thermo-Elasticity” is a combination between the theories of "Classical 

Thermo-Elasticity" and "Special Relativity" and results in the “Universal Equation of Thermo-

Elasticity”. The "structural design" of super speed vehicles requires the consideration of mass 

pulsation and energy-mass interaction at high velocity space-time scale, as the relative stress 

intensity factors are different than the corresponding absolute stress intensity factors. Such theory 

results in the "Universal Stress Intensity Factors". Thus, the “Universal Equation of Elasticity”, 

the “Universal Equation of Thermo-Elasticity” and the "Universal Stress Intensity Factors" are 

parts of the general theory of “Universal Mechanics”.   
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1. Universal Mechanics for New Generation Spacecraft 

 

In the near future the International Space Agencies should effect a competitive technological 

advantage in several strategic areas of new and rapidly developing advanced technologies. Thus, 

the scope by the big Space Agencies is to achieve in the future, an absolute spacecraft moving with 

very high speeds, even approaching the speed of light. Consequently, how far could be this future ? 

According to the present study and research such future could be much closer than everybody 

believes.  

For the future spacecraft the relative stress tensor will be much different than the absolute stress 

tensor and so special solid should be used for the construction of the next generation spacecraft.  

On the other hand, the suitable choice of the solid which should be used for the construction of 

the absolute spacecraft is under investigation, but such solid will be very much different than the 

usual composite materials.  
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Also, in order the next generation spacecraft to achieve very high speed, even approaching the 

speed of light, then such new generation spacecraft should be moving by using laser engines. Laser 

is light and so their speed is the speed of light. Thus, the use of laser engines for the future 

spacecraft would be the best device. 

Hence, we will show that there is a significant difference between the absolute stress tensor and 

the stress tensor of the airframe even for low speeds. Furthermore, for bigger speeds the difference 

of the two stress tensors will be very much increased. Thus, for bigger velocities like c/3, c/2 or 

3c/4 (c=speed of light) the relative stress tensor is very much different than the absolute one and for 

velocities near the speed of light the values of the relative stress tensor are much bigger than the 

corresponding values of the absolute stress tensor. After the speed of light an energy world would 

appear. The study of the connection between the stress tensors of the absolute frame and the 

airframe is included in the theory proposed by E.G.Ladopoulos [30] - [34] under the term 

“Relativistic Elasticity” and “Relativistic Thermo-Elasticity” and the final formula which results 

from the above theories is called the “Universal Equation of Elasticity” and the “Universal 

Equation of Thermo-Elasticity”, correspondingly. Furthermore, both theories of “Relativistic 

Elasticity” and “Relativistic Thermo-Elasticity” are included in a more general theory under the 

term “Universal Mechanics”. 

One more question is the following: What happens with our theory if somebody in the very 

future proves that the speed of light is not the maximum speed in the whole universe, but there is 

another type of energy with higher speed ? The answer is that our theory of “Universal Mechanics” 

will valid over the centuries and the milleniums, as the spacecraft when reaching the speed of light 

then becomes energy and will not be mass any more. Hence, after the speed of light there is no 

mass available, but only energy. According to NASA the Large and Small Magellanic clouds were 

thought to be the closest galaxies to ours, until 1994, when the Sagittarius Dwarf Elliptical Galaxy 

(SagDEG) was discovered. In 2003, the Canis Major Dwarf Galaxy was discovered - this is now 

the closest known galaxy to ours. Consequently, The Canis Major Dwarf Galaxy is only 25,000 

light years from the Sun, and 42,000 light years from the Galactic center. It too, is well-hidden by 

the dust in the plane of the Milky Way - which is why it wasn't discovered until recently. To get to 

the closest galaxy to ours, the Canis Major Dwarf, at Voyager's speed, it would take approximately 

749,000,000 years to travel the distance of 25,000 light years! If we could travel at the speed of 

light, it would still take 25,000 years. On the other hand, the galaxy MACS0647-JD  appears very 

young and is only a fraction of the size of our own Milky Way. The galaxy is about 13.3 billion 

light-years from Earth, the farthest galaxy yet known, and formed 420 million years after the Big 

Bang. The universe itself is only 13.7 billion years old, so this galaxy's light has been traveling 

toward us for almost the whole history of space and time. 

Beyond the above, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed 

singular integral equation methods applied to elasticity, plasticity and fracture mechanics theories. 

In the above mentioned publications the Singular Integral Operators Method (S.I.O.M.) is 

proposed for the numerical solution of the multidimensional singular integral equations in which 

the stress tensor analysis of the linear elastic theory is reduced. In addition, the theory of linear 

singular integral equations was extended to non-linear singular integral equations, too. [23]-[29]. 

Thus, the theory of “Universal Mechanics” and correspondingly the theories of “Relativistic 

Elasticity” and “Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress 

analysis of the airframes.  

Also, the classical theory of elastic stress analysis and thermo-elastic stress analysis began to be 

analyzed in the early nineteenth century and was further developed during the twentieth century. In 

the past, several important monographs were published on the classical theory of elasticity and 

thermo-elasticity. [35]-[54].  

During the past years special attention has been given, by many scientists worldwide, on the 

theoretical aspects of the special theory of relativity. Thus, some classical monographs were 

written, dealing with the theoretical foundations and investigations of the special and the general 

theory of relativity. [55]–[62]. Moreover, by the present research we will show that the "relative 

stress tensor is not symmetrical", while, as it is well known, the "absolute stress tensor is 

symmetrical". Such a difference is very important for the design of the future aircraft and 

https://imagine.gsfc.nasa.gov/resources/dict_ei.html#galaxy
https://imagine.gsfc.nasa.gov/resources/dict_ad.html#dust
https://imagine.gsfc.nasa.gov/resources/dict_qz.html#speed_of_light
https://imagine.gsfc.nasa.gov/resources/dict_qz.html#speed_of_light
https://www.space.com/52-the-expanding-universe-from-the-big-bang-to-today.html
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spacecraft of very high speeds. Finally, the "structural design" of super speed vehicles requires the 

consideration of mass pulsation [63], [64] and energy-mass interaction [65]-[70] at high velocity 

space-time scale.  

          
2.  Universal Equation of Elasticity for New Generation Spacecraft by Relativistic Elasticity   

 

Consider the state of stress at a point in the stationary frame  S
0
, defined by the following 

symmetrical stress tensor: (Fig.1)  
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Additionally, consider an infinitesimal face element  df  with a directed normal, defined by a 

unit vector  n, at definite point  p  in the three-space of a Lorenz system. The matter on either side 

of this face element experiences a force which is proportional to  df. 

 

 

Fig. 1 The state of stress  σ ik
0  in the stationary system  S 0 . 

 

Thus, the force is valid as: 

                                                                    fd)()(d nσnσ                                                  (2.3) 

 

The components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  

                                                             3,2,1,,)(  kinkiki  n                                                  (2.4) 

 

where  σik  is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space 

part  
0
ik   of the total energy-momentum tensor  Tik,  referred as the absolute stress tensor. [55], 

[56] (Fig. 2). 
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Fig. 2  The state of stress σ ik
0  in the stationary system S 0 and σ ik  in the airframe system with velocity  u  

parallel to the x 1 - axis. 

 

Also, the connection between the absolute and relative stress tensors is defined as: 

 

                                                 3,2,1,,0  kiug kiikik                                     (2.5) 

 

where  gi  are the components of the momentum density  g  and  uk  the components of the velocity  

u  of the matter. 

 

The connection between  g  and the energy flux  s,  is equal to: 

 

                                                                              
2csg                                                             (2.6) 

 

in which  c denotes the speed of light (= 300.000 km/sec). 

 

Furthermore, the total work done per unit time by elastic forces on the matter inside the closed 

surface  f  can be given by the formula: 
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where the integration in the last integral is extended over the interior  υ  of the surface  f. 

 

Hence, the work done on an infinitesimal piece of matter of volume  δυ  is valid as: 
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Besides, (2.8) must be equal to the increase per unit time of the energy inside  δυ: 
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where  h  denotes the total energy density, including the elastic energy and  tdd  is the substantial 

time derivative. 

 

Eq. (2.9) is valid as: 
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which finally leads to the relation: 
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Hence, the total energy flow is valid as: 

 

                                                                       )( σuhus                                                        (2.12) 

 

where  )( σu    is a space vector with components  ikik u  )( σu . 

 

 

So, the total momentum density can be written as: 

 

                                                                 
22
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where 2ch   denotes the total mass density, including the mass of the elastic energy. 

 

From (2.5) and (2.13) one has: 

 

                                    ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u        (2.14) 

 

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 

tensor (2.1) which is symmetrical. 

 

In the stationary frame  S
0
  the velocity  00 u   and so, from (2.5), (2.12) and (2.13) the 

following expressions are obtained: 

                             

                                                         )3,2,1,(00  kikikiikik                                   (2.15) 

 

In addition, the mechanical energy-momentum tensor satisfies the following relation: 

 

                                                                       ikik UhUT 0                                                       (2.16) 

 

where  Ui  is the four-velocity of the matter, in the Lorentz system and  ),0,0,0(0 icU i  . 

 

Thus, the following scalar can be formed: 
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with  )( 1
0 xh  the invariant rest energy density considered as a scalar function of the coordinates  

(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

 

Moreover, by applying the tensor: 

 

                                                      2cUU kiikik                                           (2.18) 

 

which satisfies the relations: 

 

                                                                  0 kikiki UU                                               (2.19) 

 

then, the following symmetrical tensor can be formed: 

 

                                                                kimkmiik STS  11                                                   (2.20) 

 

which is orthogonal to  Ui: 

 

                                                                   0 kikiki USSU                                                     (2.21) 

 

 

By combining eqs. (2.16), (2.17) and (2.20) we have: 

                                                                   20 cUUhTS kiikik                                               (2.22) 

 

Furthermore, in the stationary system  S0  we obtain: 
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Eq. (2.22) may also be written as: 

 

                                                                         ikikik ST                                                         (2.24) 

where: 

 

                                                   kikiik UUcUUh 020                                    (2.25) 

 

is the kinetic energy-momentum tensor for an elastic body and: 

 

                                                                            
200 ch                                               (2.26) 

 

is the proper mass density. 

 

We further introduce in every system  S  the quantity: 

 

                                                                 44 UUSS kiikik                                                (2.27) 

 

which, on account of (2.24) and (2.25) is valid as: 

 

                                                                  44 UUTT kiikik                                                (2.28) 

 

From (2.1) and (2.2) the three-tensor: 
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                                                                        ikikikS   00  

 

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors  
)(0 j

h  satisfy the orthonormality relations: 
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and: 
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The eigenvalues  0
)( jp ,  the principal stresses, are the three roots of the following algebraic 

equation, where  λ  is the unknown: 
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The matrix  
0
ikS   can be further written in terms of the eigenvalues and eigenvectors as: 
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Thus, from eqs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in  S
o
: 
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Consequently, in any system  S  one obtains: 
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From (2.24), (2.25), (2.27) and (2.33) follow the expressions:  
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By putting: 
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and introducing the notation  ba    for the direct product of the vectors  a  and  b,  then eqn (2.35) 

can be written for the relative stress tensor  σ  as following: 
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Furthermore, the triad vectors  
)( j

ih   satisfy the tensor relations: 

 



E.G. Ladopoulos 
 

 46  

                                                                     j
i

j
i hh )()(                                                            (2.38)  

 

                                                                   ik
j
k

j
i hh 

)()(                                                             (2.39)     

 

with  Δik  given by (2.18). 

 

If the stationary system  S
0
  for every event point is chosen in such a way that the spatial axes in 

S
0
 and in  S  have the same orientation, we have: 
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with:                       
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From (2.34) and (2.40) with  i = k = 4  follows: 
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In the stationary system, (2.37) reduces to:     
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Thus, from (2.42) follows the transformation law for the energy density: 
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and the mass density: 
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From (2.40) and (2.34) with  k = 4, we obtain the momentum density  g  with the components  

icTg ii 4 : 
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Besides, from (2.40) and (2.35) we have the relative stress tensor: 
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In the special case  u = (u,0,0),  where the notation of the matter at the point considered is 

parallel to the x1-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47) 

reduce to: 
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and the relative stress tensor gives the Universal Equation of Elasticity: 
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where  γ  is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not 

symmetrical, in contrast to the absolute stress tensor which is symmetrical. 

 

 
3. Universal Equation of Thermo-Elasticity for New Generation Spacecraft by Relativistic 
Thermo-Elasticity   

In the previous paragraphs the system under investigation, which is the elastic body, was 

regarded as a purely mechanical system. However, all macroscopic systems are in reality thermo-

dynamical systems with properties depending on non-mechanical variables such as the proper 

temperature T 
o
, and so the question which arises is to what kind of thermodynamical processes 

may be described by an energy-momentum tensor. 

 

Consequently, it is clear that all properties in which heat energy is transferred from one part of 

the system to another are excluded, for heat flow in the manner would give rise to a non-vanishing 

energy current in the rest system.  

 

Consider further a general system of continuously distributed ponderable or visible matter, 

inside which invisible heat conduction can take place, while the motion of the visible matter is 

described by the four-velocity  iU .  Then the energy-momentum tensor of the general system can 

be given by the following relation: 

                                      ikikik HMT                                                               (3.1) 

where  ikM   denotes the mechanical part of the energy-momentum tensor and  ikH   the heat part. 
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Also, the mechanical part  ikM   is valid by the following formula:   

 

                                                ikkiik ScUUdM  20                                             (3.2) 

 

and the heat part:    
 

                                                    2cUVVUH kikiik                                                       (3.3) 

 

where the four-vector  iV   satisfies the relation:    

 

                                            ikikjkjiki UdUTUTV 0                                              (3.4) 

 

where  0d   denote the normalized eigenvectors,  ik   is the tensor given by  (2.18)  and  ikP   the 

potential part of the energy momentum tensor. 

The four-vector  iV   is orthogonal to  iU :    

                                                             0iiVU                                                         (3.5) 

and so one has: 

                                              ciVi uVV ,,                                                         (3.6) 

where  u   denotes the velocity of the matter. 

 

So, in the stationary system, (3.6) reduces to:   
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Additionally, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have instead of 

(2.22): 
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Hence, from (3.8) follows the required relation (3.1), instead of (2.24). 

 

Let us further consider the general system of continuously matter described previously inside 

which invisible heat conduction can take place, while the motion of the matter is described by the 

four-velocity  iU   or by the velocity  iu . 

 

Then, for the connection between the energy-momentum tensor  ikT   and the relative stress 

tensor ik  of the general system, the following relation is valid:   
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with:    
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where  kV   denotes the four-vector given by (3.4),  ig   the momentum density and  c  the speed of 

light. 

 

The quantity  k   seems to be the most important part of  ik :    

 

                         2
4444 cUUVVUUUHH kkikiikik                                (3.11) 

 

Moreover, k  can be written by the following form by using (2.41) and (3.6):   

 

                                                  0,ξk                                                       (3.12) 

with:    
 

                                                 2, cuVuVξ                                                                  (3.13) 

    

In the stationary system,  0
ξ   is equal to the heat current density  0

V :   

                                                           00
Vξ                                                        (3.14) 

    
By combining (3.10) and (3.11), then we obtain:   

 

                                                     2cU kiik                                             (3.15) 

   

Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one has:   

 

                                 2
44 cUUUTT kiikikikkiik                     (3.16) 

 

which finally reduces to the required formula (3.9). 

 

Furthermore, consider the general system of continuously matter, inside which invisible heat 

conduction can take place. Then the momentum density  g  of this system is given by the Universal 

Equation of Thermo-Elasticity: 

                                          
 

22

,

cc
m

ξσu
ug                                                      (3.17) 

where  u  denotes the velocity of the matter at the place and time considered,  σ  the relative stress 

tensor,  ξ  is given by (3.13) and  2/ cEm    is the total mass density. 

 

From (3.9), we obtain for the energy current density:   

 

                                                   kikikk uEuD                                            (3.18) 

which can be further written as:   
 

                                                                        ξσuuD  ,E                                                   (3.19) 

  

So, from (3.19) by using the formula of the momentum density  g:   
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                                                       2cDg                                                        (3.20) 

 

we obtain the required relation (3.17) which is a generalization, for a general system with heat 

conduction. 

 

 
4. Universal Mechanics by Elastic Stress Analysis for New Generation Spacecraft 

 

Let us consider the stationary frame of Fig. 1 with  Γ1  the portion of the boundary of the body 

on which displacements are presented,  Γ2  the surface of the body on which the force tractions are 

employed and  Γ  the total surface of the body equal to  Γ1+Γ2. 

 

Furthermore, for the principal of virtual displacements, for linear elastic problems then the 

following formula is valid:  

 

                                     




2

d)(d)( 0
, kkkkkjjk uppub                                     (4.1) 

where  uk  are the virtual displacements, satisfying the homogeneous boundary conditions  0ku   

on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  of the body. (Fig. 3) 

 

 

Fig. 3 The stationary system  S 0 . 

 

 

Eqn (4.1) can be further written as following if  uk  do not satisfy the previous conditions on  Γ1: 

 

                               




12

d)(d)(d)( 0
, kkkkkkkkjjk puuuppub                    (4.2) 

 

where  0
jkjk np    are the surface tractions corresponding to the  uk  system. 

 

Then, by integrating (4.2) follows: 

 

 

                      




112

d)(dddd 0
kkkkkkkjkjkkk puuupupub         (4.3) 
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in which jk   are the strains. 

 

By a second integration then (4.3) reduces to: 

  

                                        













2112

dddd

dd 0
,

kkkkkkkk

kjjkkk

pupuupup

uub 

                     (4.4) 

 

Additionally, a fundamental solution should be found, satisfying the equilibrium equations, of 

the following type: 

 

                                                              00
,  i

ljjk                                                             (4.5) 

 

where  i
l   denotes the Dirac delta function which represents a unit load at  i  in the  l  direction. 

 

The fundamental solution for a three-dimensional isotropic body is: [31] 
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where  G denotes the shear modulus,  v  Poisson‟s ratio,  n  the normal to the surface of the body,  

lk   Kronecker‟s delta,  r  the distance from the point of application of the load to the point under 

consideration and  nj  the direction cosines (Fig.3). 

 
The displacements at a point are given by the formula: 

 

  

                                                          


 ddd bupuupu i                                  (4.7) 

 

Hence, (4.7) takes the following form for the  “l”  component: 

 

                                                      


 ddd lkkklkklk
i
l ubuppuu                              (4.8) 

 

By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 

medium: 
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Moreover, after carrying out the differentiation we have: 
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Eq. (4.10) can be further written as follows: 

 

               

                                                  


 ddd0
kkijkkijkkijij bDuSpD                           (4.11) 

 

where the third order tensor components  Dkij  and  Skij  are: 
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                         ijkjkiikjjikkijkji nvnnrrnvrrnrrnv  )41()3)(21()(3 ,,,,,,       (4.13) 

with:  
i

i
x

r
r




,  

 

Finally, because of eqs (2.49) and (4.11) by considering the moving system  S  of Fig. 2, then 

the stress-tensor reduces to the following form: 

 

    
0
1111    

      
0
1212    

     
0
1313    

       0
2121

1



   

                                                                       0
2222                                                         (4.14) 

        0
2323    

          0
3131

1



   

        
0
3232    

         
0
3333    

where  0
ij   are given by. (4.11) to (4.13). 

 

Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values of the velocity  u  of 

the moving aerospace structure: 
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Table 1 

Velocity  u   1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000 km/h 1.000000001    0.800c    1.666666667 

100,000 km/h 1.000000004    0.900c    2.294157339 

200,000 km/h 1.000000017    0.950c    3.202563076 

500,000 km/h 1.000000107    0.990c    7.088812050 

10Ε+06  km/h 1.000000429    0.999c    22.36627204 

10Ε+07  km/h 1.000042870     0.9999c     70.71244596 

10Ε+08  km/h 1.004314456     0.99999c     223.6073568 

2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 

         c/3 1.060660172     0.9999999c     2236.067978 

         c/2 1.154700538     0.99999999c     7071.067812 

        2c/3 1.341640786     0.999999999c     22360.67978 

        3c/4 1.511857892 C      

 

Thus, from Table 1 follows that for small velocities 50,000 km/h  to  200,000 km/h, the absolute 

and the relative stress tensor are nearly the same. On the contrary, for bigger velocities like  c/3, c/2  

or  3c/4  (c = speed of light), the variable  γ  takes values more than the unit and thus, relative stress 

tensor is very different from the absolute one. Also, for values of the velocity for the moving 

structure near the speed of light, the variable  γ  takes bigger values, while when the velocity is 

equal to the speed of light, then  γ  tends to the infinity. 

Thus, the Singular Integral Operators Method (S.I.O.M.) as was proposed by E.G.Ladopoulos 

[4], [8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for the numerical 

calculation of the stress tensor (3.11), for every specific case.  

 

5. Universal Stress Intensity Factors for New Generation Spacecraft by Theory of Relativistic 

Fracture Mechanics  

 

Consider a stationary frame for elastic materials in an in-plane loaded plate. Then,  the first and 

second mode stress intensity factors are given by the formulas (Fig.4): [66] 

 

                                                                0221
0

0 2lim
1

xK
x

I


                                                     (5.1) 

                                                                0121
0

0 2lim
1

xK
x

II


                                                     (5.2) 

 

 

 

Fig. 4 2-D Coordinates near the crack tip. 
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Besides, the relative first and second mode stress intensity factors for the airframes are equal 

to: 

 

                                                                 221
0
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xK
x

I


                                                     (5.3) 

                                                                 121
0
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1

xK
x

II


                                                     (5.4) 

 

Hence, because of (4.14), eqs (5.3) and (5.4) can be written as: 
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                                                     (5.5) 

                                                                 0121
0
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xK
x

II
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Moreover, the first, second and third mode stress intensity factors in the stationary frame for 

elastic materials in a 3-D solid are given by the relations (Fig.5): [67] 
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Fig. 5 3-D Coordinates near the crack tip. 

 

In addition, the relative first, second and third mode stress intensity factors for the airframes 

are equal to: 

 

                                                               221
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                                                               231
0
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Hence, because of (4.14), eqs (5.10), (5.11) and (5.12) can be written as: 
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                                                               0121
0
2lim

1

xK
x
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

                                                   (5.14) 

                                                               0231
0
2lim

1

xK
x

III


                                                    (5.15) 

 

By eqs (5.13), (5.14) and (5.15) are given the Universal Stress Intensity Factors. Consequently, 

from eqs (5.13) to (5.15) follows that the relative first and third mode stress intensity factors are the 

same for both stationary and moving frames, while the relative second mode stress intensity factor 

is much different in the above frames. All the relative stress intensity factors (first, second and 

third) are important for the fracture mechanics analysis of the future spacecraft, as for their fracture 

mechanics analysis a combination of all the three intensity factors should be used [68]. Thus, 

because of the above difference of the stress intensity factors, follows that the fracture behavior of 

the new century spacecraft would be much different and thus special materials should be used for 

their construction.  

 

6. Conclusions 

By the present research in the area of aerospace and aeronautical technologies the theory of 

“Universal Mechanics” has been further studied and applied for the design of the next generation 

spacecraft moving with very high speeds, even approaching the speed of light, as the plan of the 

International Space Agencies is to achieve such spacecraft in the future. The future investigation 

concerns to the determination of the proper composite  materials or any other kind of materials for 

the construction of the next generation spacecraft, as usual composite solids are not suitable for 

such constructions. 

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of 

Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable 

difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000 

km/h. For bigger speeds the difference between the two stress tensors is very much increased. 

“Universal Mechanics” results as a combination of the theories of "Relativistic Elasticity" and 

"Relativistic Thermo-Elasticity".   

Hence, for the structural design of the new generation spacecraft the stress tensor of the airframe 

will be used in combination to the singular integral equations. Such a stress tensor is reduced to the 

solution of a multidimensional singular integral equation and for its numerical solution the Singular 

Integral Operators Method (S.I.O.M.) will be used. 
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