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Abstract 

For the design of the future spacecraft of any speed, the leading theory of “Universal Mechanics” 

is further investigated and improved. The innovative theory of “Universal Mechanics” consists of 

the combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity”. 

Thus, according to the above theories there is a considerable difference between the absolute stress 

tensor and the stress tensor of the airframe even in the range of speeds of 50,000 km/h. Besides, for 

bigger speeds of the absolute spacecraft, like c/3, c/2 or 3c/4 (c=speed of light), then the difference 

between the two stress tensors is very much increased. Hence, for the future spacecraft with very 

high speeds, the relative stress tensor will be therefore very much different than the absolute stress 

tensor. In addition, for velocities near the speed of light, then the values of the relative stress tensor 

are very much bigger than the corresponding values of the absolute stress tensor. Such new 

generation spacecraft will be moving by using laser engines. Our theory will still exist even once in 

the very future somebody will prove that the speed of light is not the maximum speed in nature. 

The theory of “Relativistic Elasticity” is a combination between the theories of "Classical 

Elasticity" and "Special Relativity" and results in the “Universal Equation of Elasticity”. 

Additionally, the theory of “Relativistic Thermo-Elasticity” is a combination between the theories 

of "Classical Thermo-Elasticity" and "Special Relativity" and results in the “Universal Equation of 

Thermo-Elasticity”. The "structural design" of super speed vehicles requires the consideration of 

mass pulsation and energy-mass interaction at high velocity space-time scale, as the relative stress 

intensity factors are different than the corresponding absolute stress intensity factors. Such theory 

results in the "Universal Stress Intensity Factors". Consequently, the “Universal Equation of 

Elasticity”, the “Universal Equation of Thermo-Elasticity” and the "Universal Stress Intensity 

Factors" are parts of the general theory of “Universal Mechanics”.   
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1.  Universal Mechanics for Future Spacecraft 

 

The scope by the International Space Agencies is to achieve in the future, a future spacecraft 

moving with very high speeds, even approaching the speed of light. How far could be this future ? 

According to the present investigation and research such future could be much closer than 

everybody believes. For the future spacecraft the relative stress tensor will be much different than 

the absolute stress tensor and so special solid should be used for the construction of the new 

generation spacecraft.  

Also, in order the future spacecraft to achieve very high speed, even approaching the speed of 

light, then such new generation spacecraft should be moving by using laser engines. Laser is light 

and so their speed is the speed of light. Hence, the use of laser engines for the future spacecraft 

would be the best device. 

 



E.G. Ladopoulos 
 

 2  

On the other hand, the suitable choice of the solid which should be used for the construction of 

the absolute spacecraft is under investigation, but such solid will be very much different than the 

usual composite materials.  

Consequently, we will show that there is a significant difference between the absolute stress 

tensor and the stress tensor of the airframe even in the range of speeds of 50,000 km/h. 

Furthermore, for bigger speeds the difference of the two stress tensors will be very much increased. 

For bigger velocities like c/3, c/2 or 3c/4 (c=speed of light) the relative stress tensor is very much 

different than the absolute one and for velocities near the speed of light the values of the relative 

stress tensor are much bigger than the corresponding values of the absolute stress tensor. After the 

speed of light an energy world would appear. The study of the connection between the stress 

tensors of the absolute frame and the airframe is included in the theory proposed by 

E.G.Ladopoulos [30] - [34] under the term “Relativistic Elasticity” and “Relativistic Thermo-

Elasticity” and the final formula which results from the above theories is called the “Universal 

Equation of Elasticity” and the “Universal Equation of Thermo-Elasticity”, correspondingly. In 

addition, both theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity” are 

included in a more general theory under the term “Universal Mechanics”. 

One more question is the following: What happens with our theory if somebody in the very 

future proves that the speed of light is not the maximum speed in the whole universe, but there is 

another type of energy with higher speed ? The answer is that our theory of “Universal Mechanics” 

will valid over the centuries and the milleniums, as the spacecraft when reaching the speed of light 

then becomes energy and will not be mass any more. Hence, after the speed of light there is no 

mass available, but only energy. According to NASA the Large and Small Magellanic clouds were 

thought to be the closest galaxies to ours, until 1994, when the Sagittarius Dwarf Elliptical Galaxy 

(SagDEG) was discovered. In 2003, the Canis Major Dwarf Galaxy was discovered - this is now 

the closest known galaxy to ours. Thus, The Canis Major Dwarf Galaxy is only 25,000 light years 

from the Sun, and 42,000 light years from the Galactic center. It too, is well-hidden by the dust in 

the plane of the Milky Way - which is why it wasn't discovered until recently. To get to the closest 

galaxy to ours, the Canis Major Dwarf, at Voyager's speed, it would take approximately 

749,000,000 years to travel the distance of 25,000 light years! If we could travel at the speed of 

light, it would still take 25,000 years. On the other hand, the galaxy MACS0647-JD  appears very 

young and is only a fraction of the size of our own Milky Way. The galaxy is about 13.3 billion 

light-years from Earth, the farthest galaxy yet known, and formed 420 million years after the Big 

Bang. The universe itself is only 13.7 billion years old, so this galaxy's light has been traveling 

toward us for almost the whole history of space and time. 

Furthermore, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular 

integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the 

above mentioned publications the Singular Integral Operators Method (S.I.O.M.) is proposed for 

the numerical solution of the multidimensional singular integral equations in which the stress 

tensor analysis of the linear elastic theory is reduced. In addition, the theory of linear singular 

integral equations was extended to non-linear singular integral equations, too. [23]-[29]. Thus, the 

theory of “Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and 

“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the 

airframes.  

Also, the classical theory of elastic stress analysis and thermo-elastic stress analysis began to be 

analyzed in the early nineteenth century and was further developed during the twentieth century. In 

the past, several important monographs were published on the classical theory of elasticity and 

thermo-elasticity. [35]-[54].  

During the past years special attention has been given, by many scientists worldwide, on the 

theoretical aspects of the special theory of relativity. So, some classical monographs were written, 

dealing with the theoretical foundations and investigations of the special and the general theory of 

relativity [55]–[62]. Additionally, by the current study we will show that the "relative stress tensor 

is not symmetrical", while, as it is well known, the "absolute stress tensor is symmetrical". Such a 

difference is very important for the design of the new generation aircraft and spacecraft of very 

high speeds. Finally, the "structural design" of super speed vehicles requires the consideration of 

https://imagine.gsfc.nasa.gov/resources/dict_ei.html#galaxy
https://imagine.gsfc.nasa.gov/resources/dict_ad.html#dust
https://imagine.gsfc.nasa.gov/resources/dict_qz.html#speed_of_light
https://imagine.gsfc.nasa.gov/resources/dict_qz.html#speed_of_light
https://www.space.com/52-the-expanding-universe-from-the-big-bang-to-today.html
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mass pulsation [63], [64] and energy-mass interaction [65]-[70] at high velocity space-time scale.  

Even if in the late future it will be proved that there exists a higher limit than the speed of light, 

then our sophisticated theory will still be existed, as over the speed of light the mass is becoming 

energy. 

 
2.  Relativistic Elasticity - Universal Equation of Elasticity for Future Spacecraft 

Consider the state of stress at a point in the stationary frame  S
0
, defined by the following 

symmetrical stress tensor: (Fig.1)  
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In addition, we consider an infinitesimal face element  df  with a directed normal, defined by a 

unit vector  n, at definite point  p  in the three-space of a Lorenz system. The matter on either side 

of this face element experiences a force which is proportional to  df. 

 

 

 

Fig. 1 The state of stress  σ ik
0  in the stationary system  S 0 . 

 

Thus, the force is valid as: 

                                                                    fd)()(d nσnσ                                                  (2.3) 

 

The components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  

                                                             3,2,1,,)(  kinkiki  n                                                  (2.4) 

 

where  σik  is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space 

part  
0
ik   of the total energy-momentum tensor  Tik,  referred as the absolute stress tensor. [55], 

[56] (Fig. 2). 
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Fig. 2  The state of stress σ ik
0  in the stationary system S 0 and σ ik  in the airframe system with velocity  u  

parallel to the x 1 - axis. 

 

 

Besides, the connection between the absolute and relative stress tensors is defined as: 

 

                                                 3,2,1,,0  kiug kiikik                                     (2.5) 

 

in which  gi  are the components of the momentum density  g  and  uk  the components of the 

velocity  u  of the matter. 

 

The connection between  g  and the energy flux  s,  is equal to: 

 

                                                                              
2csg                                                             (2.6) 

 

Where  c  denotes the speed of light (= 300.000 km/sec). 

 

Consequently, the total work done per unit time by elastic forces on the matter inside the closed 

surface  f  can be given by the formula: 

 

                                     3,2,1,,d
)(

dd)(   ki
x

u
funfW

k

iki

f

ikik

f 





unσ              (2.7) 

 

where the integration in the last integral is extended over the interior  υ  of the surface  f. 

 

Hence, the work done on an infinitesimal piece of matter of volume  δυ  is valid as: 
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Also, (2.8) must be equal to the increase per unit time of the energy inside  δυ: 
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where  h  denotes the total energy density, including the elastic energy and  tdd  is the substantial 

time derivative. 

 

Eq. (2.9) is valid as: 
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which finally leads to the relation: 

                                                              0)( 
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Thus, the total energy flow is valid as: 

 

                                                                       )( σuhus                                                        (2.12) 

 

in which  )( σu    is a space vector with components  ikik u  )( σu . 

 

 

Hence, the total momentum density can be written as: 

 

                                                                 
22

)(

cc

σu
u
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where  2ch   denotes the total mass density, including the mass of the elastic energy. 

 

From (2.5) and (2.13) we obtain: 

 

                                    ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u        (2.14) 

 

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 

tensor (2.1) which is symmetrical. 

 

In the stationary frame  S
0
  the velocity  00 u   and thus, from (2.5), (2.12) and (2.13) the 

following expressions are obtained: 

                             

                                                         )3,2,1,(00  kikikiikik                                   (2.15) 

 

Moreover, the mechanical energy-momentum tensor satisfies the following relation: 

 

                                                                       ikik UhUT 0                                                       (2.16) 

 

where Ui  is the four-velocity of the matter, in the Lorentz system and  ),0,0,0(0 icU i  . 

 

Thus, the following scalar can be formed: 
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with  )( 1
0 xh  the invariant rest energy density considered as a scalar function of the coordinates  

(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

 

Moreover, by applying the tensor: 

 

                                                      2cUU kiikik                                           (2.18) 

 

which satisfies the relations: 

 

                                                                  0 kikiki UU                                               (2.19) 

 

then, the following symmetrical tensor can be formed: 

 

                                                                kimkmiik STS  11                                                   (2.20) 

 

which is orthogonal to  Ui: 

 

                                                                   0 kikiki USSU                                                     (2.21) 

 

 

By combining eqs. (2.16), (2.17) and (2.20) one has: 

 

                                                                   20 cUUhTS kiikik                                               (2.22) 

 

Additionally, in the stationary system  S0  one obtains: 

 

                                                              0, 0
4

0
4

00  iiikikik SSS                                          (2.23) 

 

Eq. (2.22) may also be written as: 

 

                                                                         ikikik ST                                                         (2.24) 

where: 

 

                                                   kikiik UUcUUh 020                                    (2.25) 

 

is the kinetic energy-momentum tensor for an elastic body and: 

 

                                                                            
200 ch                                               (2.26) 

 

is the proper mass density. 

 

We introduce further in every system  S  the quantity: 

 

                                                                 44 UUSS kiikik                                                (2.27) 

 

which, on account of (2.24) and (2.25) is valid as: 

 

                                                                  44 UUTT kiikik                                                (2.28) 
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From (2.1) and (2.2) the three-tensor: 

 

                                                                        ikikikS   00  

 

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors  
)(0 j

h  satisfy the orthonormality relations: 
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The eigenvalues  0
)( jp ,  the principal stresses, are the three roots of the following algebraic 

equation, where  λ  is the unknown: 

 

                                                              000  ikikikikS                                 (2.30) 

 

The matrix  0
ikS   can be further written in terms of the eigenvalues and eigenvectors as: 
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Then, from eqs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in  S
o
: 
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Thus, in any system  S  we have: 
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From (2.24), (2.25), (2.27) and (2.33) follow the expressions:  
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By putting: 
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and introducing the notation  ba    for the direct product of the vectors  a  and  b,  then eqn (2.35) 

can be written for the relative stress tensor  σ  as following: 
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Moreover, the triad vectors  
)( j

ih   satisfy the tensor relations: 
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with  Δik  given by (2.18). 

 

If the stationary system  S
0
  for every event point is chosen in such a way that the spatial axes in 

S
0
 and in  S  have the same orientation, we obtain: 
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with:                       
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From (2.34) and (2.40) with  i = k = 4  follows: 
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In the stationary system, (2.37) reduces to:     
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Hence, from (2.42) we have the following transformation law for the energy density: 
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and the mass density: 
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From (2.40) and (2.34) with  k = 4, one obtains the momentum density  g  with the components  

icTg ii 4 : 
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Furthermore, from (2.40) and (2.35) one has the relative stress tensor: 
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    420 )1())(( u  uσuuu  

 

In the special case  u = (u,0,0),  where the notation of the matter at the point considered is 

parallel to the x1-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47) 

reduce to: 
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and the relative stress tensor gives the Universal Equation of Elasticity: 
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where γ  is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not 

symmetrical, in contrast to the absolute stress tensor which is symmetrical. 

 

 
3.  Relativistic Thermo-Elasticity - Universal Equation of Thermo-Elasticity for Future 
Spacecraft 

In the previous paragraphs the system under investigation, which is the elastic body, was 

regarded as a purely mechanical system. On the contrary, all macroscopic systems are in reality 

thermo-dynamical systems with properties depending on non-mechanical variables such as the 

proper temperature T 
o
, and so the question which arises is to what kind of thermodynamical 

processes may be described by an energy-momentum tensor. 

 

Thus, it is clear that all properties in which heat energy is transferred from one part of the 

system to another are excluded, for heat flow in the manner would give rise to a non-vanishing 

energy current in the rest system.  

 

Also, consider a general system of continuously distributed ponderable or visible matter, inside 

which invisible heat conduction can take place, while the motion of the visible matter is described 

by the four-velocity  iU .  Then the energy-momentum tensor of the general system can be given by 

the following relation: 

                                      ikikik HMT                                                               (3.1) 
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where  ikM   denotes the mechanical part of the energy-momentum tensor and  ikH   the heat part. 

 

In addition, the mechanical part  ikM   is valid by the following formula:   

 

                                                ikkiik ScUUdM  20                                             (3.2) 

 

and the heat part:    
 

                                                    2cUVVUH kikiik                                                       (3.3) 

 

in which the four-vector  iV   satisfies the relation:    

 

                                            ikikjkjiki UdUTUTV 0                                              (3.4) 

 

where  0d   denote the normalized eigenvectors,  ik   is the tensor given by  (2.18)  and  ikP   the 

potential part of the energy momentum tensor. 

 

The four-vector  iV   is orthogonal to  iU :    

                                                             0iiVU                                                         (3.5) 

and so we obtain: 

                                              ciVi uVV ,,                                                        (3.6) 

where u  denotes the velocity of the matter. 

 

Thus, in the stationary system, (3.6) reduces to:   

 

                                                           0,00
ViV                                                        (3.7) 

    

Also, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have instead of (2.22): 

 

                                   220 cUVVUcUUdTS kikikiikik                                 (3.8) 

 

Hence, from (3.8) follows the required relation (3.1), instead of (2.24). 

 

Consider further the general system of continuously matter described previously inside which 

invisible heat conduction can take place, while the motion of the matter is described by the four-

velocity  iU   or by the velocity  iu . 

 

Then, for the connection between the energy-momentum tensor  ikT   and the relative stress 

tensor ik  of the general system, the following relation is valid:   

 

 

                                     2cuugT kiikkiik                                              (3.9) 

with:    
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                                             icUUVVU kkk 444                                                    (3.10) 

 

where  kV   denotes the four-vector given by (3.4),  ig   the momentum density and  c  the speed of 

light. 

 

The quantity  k   seems to be the most important part of  ik :    

 

                         2
4444 cUUVVUUUHH kkikiikik                                (3.11) 

 

Moreover, k  can be written by the following form by using (2.41) and (3.6):   

 

                                                  0,ξk                                                       (3.12) 

with:    
 

                                                 2, cuVuVξ                                                                  (3.13) 

    

In the stationary system,  0
ξ   is equal to the heat current density  0

V :   

                                                           00
Vξ                                                        (3.14) 

    
By combining (3.10) and (3.11), then we obtain:   

 

                                                     2cU kiik                                             (3.15) 

   

Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one has:   

 

                                 2
44 cUUUTT kiikikikkiik                     (3.16) 

 

which finally reduces to the required formula (3.9). 

 

Furthermore, consider the general system of continuously matter, inside which invisible heat 

conduction can take place. Then the momentum density  g  of this system is given by the Universal 

Equation of Thermo-Elasticity: 

                                          
 

22

,

cc
m

ξσu
ug                                                      (3.17) 

where  u  denotes the velocity of the matter at the place and time considered,  σ  the relative stress 

tensor,  ξ  is given by (3.13) and  2/ cEm    is the total mass density. 

 

From (3.9), we obtain for the energy current density:   

 

                                                   kikikk uEuD                                            (3.18) 

which can be further written as:   
 

                                                                        ξσuuD  ,E                                                   (3.19) 

  

Finally, from (3.19) by using the formula of the momentum density  g:   
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                                                       2cDg                                                        (3.20) 

 

one obtains the required relation (3.17) which is a generalization, for a general system with heat 

conduction. 

 

 
4.  Universal Mechanics by Elastic Stress Analysis for Future Spacecraft    

 

Let us consider the stationary frame of Fig. 1 with  Γ1  the portion of the boundary of the body 

on which displacements are presented,  Γ2  the surface of the body on which the force tractions are 

employed and  Γ  the total surface of the body equal to  Γ1+Γ2. 

 

Additionally, for the principal of virtual displacements, for linear elastic problems then the 

following formula is valid:  

 

                                     




2

d)(d)( 0
, kkkkkjjk uppub                                     (4.1) 

where  uk  are the virtual displacements, satisfying the homogeneous boundary conditions  0ku   

on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  of the body. (Fig. 3) 

 

 

Fig. 3 The stationary system  S 0 . 

 

 

Eqn (4.1) can be further written as following if  uk  do not satisfy the previous conditions on  Γ1: 

 

                               




12

d)(d)(d)( 0
, kkkkkkkkjjk puuuppub                    (4.2) 

 

in which  0
jkjk np    are the surface tractions corresponding to the  uk  system. 

 

Then, by integrating (4.2) follows: 

 

 

                      




112

d)(dddd 0
kkkkkkkjkjkkk puuupupub         (4.3) 
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where jk   are the strains. 

 

By a second integration then (4.3) reduces to: 

  

                                        













2112

dddd

dd 0
,

kkkkkkkk

kjjkkk

pupuupup

uub 

                     (4.4) 

 

Moreover, a fundamental solution should be found, satisfying the equilibrium equations, of the 

following type: 

 

                                                              00
,  i

ljjk                                                             (4.5) 

 

in which  i
l   denotes the Dirac delta function which represents a unit load at  i  in the  l  direction. 

The fundamental solution for a three-dimensional isotropic body is: [31] 

                                       












kl

lklk
x

r

x

r
v

rvG
u










)43(

)1(16

1*
 

                                           























kl

lklk
x

r

x

r
v

n

r

rv
p










3)21(

)1(8

1
2

*                      (4.6) 

   













 l

k

k

l

n
x

r
n

x

r
v








)21(  

 

where  G  is the shear modulus,  v  Poisson‟s ratio,  n  the normal to the surface of the body,  lk   

Kronecker‟s delta,  r  the distance from the point of application of the load to the point under 

consideration and  nj  the direction cosines (Fig.3). 

 
The displacements at a point are given as following: 

 

  

                                                          


 ddd bupuupu i                                  (4.7) 

 

So, (4.7) takes the following form for the  “l”  component: 

 

                                                      


 ddd lkkklkklk
i
l ubuppuu                              (4.8) 

 

By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 

medium: 

 

                                                         


















i

j

j

i

l

l
ijij

x

u

x

u
G

x

u

v

Gv














21

20
                                 (4.9) 

 

Moreover, after carrying out the differentiation one obtains: 
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                                                






























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d
21

20
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jk
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ik

l

lk
ijij p

x

u

x

u
G

x

u

v

Gv
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






  

                                                     






























 



d
21
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k

i

jk

j

ik

l

lk
ij b

x

u

x

u
G

x

u

v

Gv












                   (4.10) 

                                                    

































 d

21

2
k

i

jk

j

ik

l

lk
ij u

x

p

x

p
G

x

p
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Gv










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Eq. (4.10) can be further written as follows: 

 

               

                                                  


 ddd0
kkijkkijkkijij bDuSpD                           (4.11) 

 

where the third order tensor components  Dkij  and  Skij  are: 

                                       kjikijikjjkikij rrrrrrv
rv

D ...,,,2
3)21(

)1(8

1






               (4.12) 

                                










 kjiijkjikkijkij rrrrrvrv

n

r

rv

G
S ,,,,,,3

5)()21(3
)1(4

 

                         ijkjkiikjjikkijkji nvnnrrnvrrnrrnv  )41()3)(21()(3 ,,,,,,       (4.13) 

with:  
i

i
x

r
r




,  

 

Finally, because of eqs (2.49) and (4.11) by considering the moving system  S  of Fig. 2, then 

the stress-tensor reduces to the following form: 

 

    
0
1111    

      
0
1212    

     
0
1313    

       0
2121

1



   

                                                                       0
2222                                                         (4.14) 

        0
2323    

          0
3131

1



   

        
0
3232    

         
0
3333    

where  0
ij   are given by. (4.11) to (4.13). 

Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values of the velocity  u  of 

the moving aerospace structure: 
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Table 1 

Velocity  u   1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000 km/h 1.000000001    0.800c    1.666666667 

100,000 km/h 1.000000004    0.900c    2.294157339 

200,000 km/h 1.000000017    0.950c    3.202563076 

500,000 km/h 1.000000107    0.990c    7.088812050 

10Ε+06  km/h 1.000000429    0.999c    22.36627204 

10Ε+07  km/h 1.000042870     0.9999c     70.71244596 

10Ε+08  km/h 1.004314456     0.99999c     223.6073568 

2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 

         c/3 1.060660172     0.9999999c     2236.067978 

         c/2 1.154700538     0.99999999c     7071.067812 

        2c/3 1.341640786     0.999999999c     22360.67978 

        3c/4 1.511857892 C      

 

Hence, from Table 1 follows that for small velocities 50,000 km/h  to  200,000 km/h, the 

absolute and the relative stress tensor are nearly the same. On the other hand, for bigger velocities 

like  c/3, c/2  or  3c/4  (c = speed of light), the variable  γ  takes values more than the unit and thus, 

relative stress tensor is very different from the absolute one. Moreover, for values of the velocity 

for the moving structure near the speed of light, the variable  γ  takes bigger values, while when the 

velocity is equal to the speed of light, then  γ  tends to the infinity. Thus, the Singular Integral 

Operators Method (S.I.O.M.) as was proposed by E.G.Ladopoulos [4], [8], [9], [11], [12], [13], 

[15] and E.G.Ladopoulos et al. [22] will be used for the numerical calculation of the stress tensor 

(3.11), for every specific case.  

 
5.  Relativistic Fracture Mechanics by Universal Stress Intensity Factors for Future 
Spacecraft 

Consider a stationary frame for elastic materials in an in-plane loaded plate. Then,  the first and 

second mode stress intensity factors are given by the formulas (Fig.4): [66] 

 

                                                                0221
0

0 2lim
1

xK
x

I


                                                     (5.1) 

                                                                0121
0

0 2lim
1

xK
x

II


                                                     (5.2) 

 

Fig. 4 2-D Coordinates near the crack tip. 

 

Moreover, the relative first and second mode stress intensity factors for the airframes are equal 

to: 
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                                                                 221
0
2lim

1

xK
x

I


                                                     (5.3) 

                                                                 121
0
2lim

1

xK
x

II


                                                     (5.4) 

 

Hence, because of (4.14), eqs (5.3) and (5.4) can be written as: 

 

                                                                 0221
0
2lim

1

xK
x

I


                                                     (5.5) 

                                                                 0121
0
2lim

1

xK
x

II


                                                   (5.6) 

 

In addition, the first, second and third mode stress intensity factors in the stationary frame for 

elastic materials in a 3-D solid are given by the relations (Fig.5): [67] 

 

                                                                  0221
0

0 2lim
1

xK
x

I


                                                    (5.7) 

                                                                  0121
0

0 2lim
1

xK
x

II


                                                    (5.8) 

                                                                  0231
0

0 2lim
1

xK
x

III


                                                   (5.9) 

    

 
Fig. 5 3-D Coordinates near the crack tip. 

 

Also, the relative first, second and third mode stress intensity factors for the airframes are 

equal to: 

 

                                                               221
0
2lim

1

xK
x

I


                                                     (5.10) 

                                                               121
0
2lim

1

xK
x

II


                                                     (5.11) 

                                                               231
0
2lim

1

xK
x

III


                                                    (5.12) 

    

Thus, because of (4.14), eqs (5.10), (5.11) and (5.12) can be written as: 

 

                                                               0221
0
2lim

1

xK
x

I


                                                     (5.13) 

                                                               0121
0
2lim

1

xK
x

II


                                                   (5.14) 

                                                               0231
0
2lim

1

xK
x

III


                                                    (5.15) 
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By eqs (5.13), (5.14) and (5.15) are given the Universal Stress Intensity Factors. Hence, from 

eqs (5.13) to (5.15) follows that the relative first and third mode stress intensity factors are the 

same for both stationary and moving frames, while the relative second mode stress intensity factor 

is much different in the above frames. All the relative stress intensity factors (first, second and 

third) are important for the fracture mechanics analysis of the next generation aircraft and 

spacecraft, as for their fracture mechanics analysis a combination of all the three intensity factors 

should be used [68]. Hence, because of the above difference of the stress intensity factors, follows 

that the fracture behavior of the next generation aircraft and spacecraft would be much different 

and thus special materials should be used for their construction.  

 

6. Conclusions 

By the current research in the area of aerospace and aeronautical technologies the theory of 

“Universal Mechanics” has been further improved and applied for the design of the future 

spacecraft moving with very high speeds, even approaching the speed of light, as the plan of the 

International Space Agencies is to achieve such spacecraft in the future. The future investigation 

concerns to the determination of the proper composite  materials or any other kind of materials for 

the construction of the next generation spacecraft, as usual composite solids are not suitable for 

such constructions. 

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of 

Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable 

difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000 

km/h. For bigger speeds the difference between the two stress tensors is very much increased. 

“Universal Mechanics” results as a combination of the theories of "Relativistic Elasticity" and 

"Relativistic Thermo-Elasticity".   

Hence, for the structural design of the new generation aircraft and spacecraft will be used the 

stress tensor of the airframe in combination to the singular integral equations. Such a stress tensor 

is reduced to the solution of a multidimensional singular integral equation and for its numerical 

solution will be used the Singular Integral Operators Method (S.I.O.M.). 
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