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Abstract 
By the current research, mathematical modeling and dynamic analysis of flexible manipulators are 
presented based on finite element method. In order this to be effected, each link of flexible 
manipulator is modeled by finite number of elements and the displacement of element is 
formulated based on nodal coordinates and shape functions of beam element. Then, the kinetic and 
potential energy of the system is developed using the displacement in the reference coordinate 
systems. In addition, by employing the Lagrange principle, the nonlinear dynamic model of the 
system is derived. Besides, simulation results are presented to validate the proposed method. 
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1. Introduction 

Flexible manipulators exhibit many advantages over their traditional rigid ones: they have light 
weight, their motors are smaller, they consume less energy, and their production is frugal. Because 
of these important features, the application of flexible manipulators are exceedingly developed 
during last decades, and they have been achieved an important role in many fields of science such 
as surgical operation [1, 2], nuclear application [3, 4], and aero space structures [5, 6]. Thus, the 
mathematical modeling and dynamic analysis of such system is important and treated by some 
authors: Book [7] analyzed the dynamic behavior of flexible manipulators based on recursive 
lagrangian method.  

Moreover, a Newton-Euler approach is presented in [8] to model the dynamic of a flexible 
robot. Meghdari and Fahimi [9] used an analytical method to decouple the dynamic equations of 
elastic manipulators. Furthermore, a lumped model of a planer flexible manipulator is presented in 
[10]. Singh [10] used an extended Hamilton’s principle to derive the equation of motion of the 
flexible manipulator. Besides, Korayem et al. [11, 12] presented the dynamic modeling of flexible 
manipulator systems, based on assumed mode method. In their method, the flexible behavior of the 
system is modeled via eigenvalue functions multiplied by modal coordinate of the system.     

In this paper, the mathematical analysis and dynamic modeling of flexible manipulator is 
presented based on finite element method. Each link of the system is modeled by finite number of 
elements, and the displacement vector of each point of the robot is formulated in the reference 
coordinate by means of finite formulation of beam element. Then, the kinetic and potential energies 
of the system are presented, and the dynamic model of the system is derived using Lagrange 
principle. Finally, simulation results are presented. 

 
2. Finite element formulation for mathematical model of the system 
       

To present the mathematical and dynamic model of the flexible manipulators, the system with m 
number of links, each link is divided to  elements with length of . As the total displacement of 

each point of the flexible manipulator can be presented as 
in ijl

ijrr . According to Figure 1, the reference 
coordinate system is shown by OXY, and the local coordinate system attached to ith link is 
assumed as .  iii YXO
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Fig. 1 The flexible manipulator 

 
The parameters of the flexible manipulator are shown in Table 1. 
  

Table 1. Parameters of flexible manipulator 
 

Nomenclatures Parameters 
ij  Jth element of ith link 

ijrr  Displacement vector of element 

ior
r

 Displacement vector of ith joint  

iθ  Angular displacement of ith joint  

in  Number of elements of ith link 

iL  Length of ith link 

im  Mass per length of ith link 
g  Gravitational constant of earth 

ijl  Length of jth element of ith link 

iE  Elasticity modulus of ith link 

iI  Moment of inertia of ith link 
iT0  Rotation matrix between local and global 

coordinate system 
 

To present the total displacement vector of ijth element of the system in the global coordinate 
system, this vector is assumed as a summation of displacement of Oi, and the deflection of the link 
in the local coordinate : iii YXO
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where yij is the deflection of element due to flexibility of system in the local coordinates. By 
implementation of finite element method, this displacement is presumed a summation of Hermitian 
shape function multiplied to nodal coordinate of the element [13]:  
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where kφ shows the shape function and are the nodal coordinate of the systems, and are 
given as [13]:  
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As the displacement vector of element is formulated, the kinetic energy of the element is stated as 
follows:  

ijij

l

ij
ij

T
ij

iij lxdx
t
r

t
r

mT
i

<<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂

∂

∂
= ∫

0

0.
2
1

rr
   (2.7) 

If, the vectors [ ]Tijijijijiij uuuuz 2212212 ++−= θr  and [ ]Tijijijijij uuuu 2212212 ++−=ψ
r  are defined, then Eq. (2.7) 

can be rewritten as:  
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Besides, the potential energy of the element is shown as , and is a summation of gravitational 

potential energy , and elastic potential energy : 
ijV

gijV
eijV

ijeijgij VVV +=
  (2.8a) 

The gravitational potential energy is given as:  
[ ] ijij
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And the elastic energy of the system is:  
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where the stiffness matrix Kij  is presented as:  
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Beyond the above, the generalized coordinate vector is defined as qr , and the total kinetic and 
potential energy of the system can be written as:  
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Then, the Lagrange function is introduced as VTqqL −=),( &rr
, and the Lagrange’ principle is 

developed. The principle of Lagrange for dynamic systems is expressed as:  
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where  represents the generalized coordinates, is the generalized external force. Thus, by 
implementation of Lagrange principle, the nonlinear dynamic equations of the system are 
summarized as follows:  

jq jQ

 
( ) τr&rr&&r BqqfqM =+ ,    (2.14) 

 
As in Eq. (2.14) is presented, the nonlinear dynamic model of the system is developed, and no 
linearization is done. Consequently, the nonlinear terms affect the dynamic of the system.   
It must be further noticed that for each link of the flexible manipulator, the first node is coincided 
on the joint of the link. Thus, these nodal coordinates are zero:  
 

00 21 == )t(u,)t(u ii    (2.15) 

 
3. Dynamic model of a single link manipulator 

For a single-link flexible manipulator, as the link modeled by one element, the generalized 
coordinate vector of the system is [ ]431 uuq θ=

r , where 1θ  is angular displacement of the robot 
joint, u3 and u4 are the elastic deflection and slope of the end point of  the flexible manipulator.  

 
Moreover, the rotation matrix of the system is:  
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and the total displacement of any point of the robot is:  
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So, the kinetic and potential energies of the single-link flexible manipulator are stated as:  
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Thus, the dynamic equation of the system can be derived, using Lagrange principle.   
To simulate the dynamic behavior of the system, the parameters are given as: m1=5 kg, 
L1=1m,  I1=5e-9, E=20e9 pa, g=9.81. The simulation results are as follows: 
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Fig. 2  Angular displacement of flexible manipulator 

 

 
 

Fig. 3  Displacement mode shape of the flexible manipulator 
 
4. Conclusions 

 

In this paper, the nonlinear dynamic analysis of the flexible manipulators has been studied using 

finite element method. The total displacement vector of the system has been formulated using 

Hermitian shape function.  

Hence, the total displacement of the elastic arm in reference coordinate system has been 

presented, the Lagrange principle has been used to derive the nonlinear dynamic motion of the 

elastic manipulator. Finally, the proposed method has been employed to derive the dynamic 

equations of a single-link manipulator, and some simulations are done. 
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